IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i3p899-912.html
   My bibliography  Save this article

Solving the List Coloring Problem through a branch-and-price algorithm

Author

Listed:
  • Lucci, Mauro
  • Nasini, Graciela
  • Severín, Daniel

Abstract

In this work, we present a branch-and-price algorithm to solve the weighted version of the List Coloring Problem, based on a vertex cover formulation by stable sets. This problem is interesting for its applications and also for the many other problems that it generalizes, including the well-known Graph Coloring Problem. With the introduction of the concept of indistinguishable colors, some theoretical results are presented which are later incorporated into the algorithm. We propose two branching strategies based on others for the Graph Coloring Problem, the first is an adaptation of the one used by Mehrotra and Trick in their pioneering branch-and-price algorithm and the other is inspired by the one used by Méndez-Díaz and Zabala in their branch-and-cut algorithm. The rich structure of this problem makes both branching strategies robust. Extensive computation experimentation on a wide variety of instances shows the effectiveness of this approach and evidences the different behaviors that the algorithm can have according to the structure of each type of instance.

Suggested Citation

  • Lucci, Mauro & Nasini, Graciela & Severín, Daniel, 2024. "Solving the List Coloring Problem through a branch-and-price algorithm," European Journal of Operational Research, Elsevier, vol. 315(3), pages 899-912.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:3:p:899-912
    DOI: 10.1016/j.ejor.2024.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724000742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anuj Mehrotra & Michael A. Trick, 1996. "A Column Generation Approach for Graph Coloring," INFORMS Journal on Computing, INFORMS, vol. 8(4), pages 344-354, November.
    2. Renhua Li & Leonie U Hempel & Tingbo Jiang, 2015. "A Non-Parametric Peak Calling Algorithm for DamID-Seq," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex Gliesch & Marcus Ritt, 2022. "A new heuristic for finding verifiable k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 28(1), pages 61-91, February.
    2. Carlos V. G. C. Lima & Dieter Rautenbach & Uéverton S. Souza & Jayme L. Szwarcfiter, 2022. "On the computational complexity of the bipartizing matching problem," Annals of Operations Research, Springer, vol. 316(2), pages 1235-1256, September.
    3. Xiao-Feng Xie & Jiming Liu, 2009. "Graph coloring by multiagent fusion search," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 99-123, August.
    4. N. Cherfi & M. Hifi, 2010. "A column generation method for the multiple-choice multi-dimensional knapsack problem," Computational Optimization and Applications, Springer, vol. 46(1), pages 51-73, May.
    5. M Plumettaz & D Schindl & N Zufferey, 2010. "Ant Local Search and its efficient adaptation to graph colouring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 819-826, May.
    6. Massimiliano Caramia & Paolo Dell'Olmo, 2001. "Iterative coloring extension of a maximum clique," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(6), pages 518-550, September.
    7. Syam Menon & Rakesh Gupta, 2008. "Optimal Broadcast Scheduling in Packet Radio Networks via Branch and Price," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 391-399, August.
    8. Karen Aardal & Stan Hoesel & Arie Koster & Carlo Mannino & Antonio Sassano, 2007. "Models and solution techniques for frequency assignment problems," Annals of Operations Research, Springer, vol. 153(1), pages 79-129, September.
    9. Zacharie Ales & Céline Engelbeen & Rosa Figueiredo, 2024. "Correlation Clustering Problem Under Mediation," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 672-689, March.
    10. D Briskorn & A Drexl, 2009. "A branch-and-price algorithm for scheduling sport leagues," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 84-93, January.
    11. Claudio Gambella & Joe Naoum-Sawaya & Bissan Ghaddar, 2018. "The Vehicle Routing Problem with Floating Targets: Formulation and Solution Approaches," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 554-569, August.
    12. Van Bang Le & Sheng-Lung Peng, 2018. "On the complete width and edge clique cover problems," Journal of Combinatorial Optimization, Springer, vol. 36(2), pages 532-548, August.
    13. Muñoz, Susana & Teresa Ortuño, M. & Ramírez, Javier & Yáñez, Javier, 2005. "Coloring fuzzy graphs," Omega, Elsevier, vol. 33(3), pages 211-221, June.
    14. Caramia, Massimiliano & Dell'Olmo, Paolo, 2008. "Embedding a novel objective function in a two-phased local search for robust vertex coloring," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1358-1380, September.
    15. Stefano Gualandi & Federico Malucelli, 2012. "Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 81-100, February.
    16. Bernard Gendron & Alain Hertz & Patrick St-Louis, 2007. "On edge orienting methods for graph coloring," Journal of Combinatorial Optimization, Springer, vol. 13(2), pages 163-178, February.
    17. Hang Xu & Zhi-Long Chen & Srinivas Rajagopal & Sundar Arunapuram, 2003. "Solving a Practical Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 37(3), pages 347-364, August.
    18. Vincenzo Cutello & Giuseppe Nicosia & Mario Pavone, 2007. "An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem," Journal of Combinatorial Optimization, Springer, vol. 14(1), pages 9-33, July.
    19. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    20. David R. Morrison & Jason J. Sauppe & Edward C. Sewell & Sheldon H. Jacobson, 2014. "A Wide Branching Strategy for the Graph Coloring Problem," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 704-717, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:3:p:899-912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.