IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i3p855-862.html
   My bibliography  Save this article

Online early work scheduling on parallel machines

Author

Listed:
  • Jiang, Yiwei
  • Wu, Mengjing
  • Chen, Xin
  • Dong, Jianming
  • Cheng, T.C.E.
  • Blazewicz, Jacek
  • Ji, Min

Abstract

We consider non-preemptive online parallel-machine scheduling with a common due date to maximize the total early work of all the jobs, i.e., the total processing time of the jobs (or parts) completed before the common due date. For the general case of m machines, we provide a parameter lower bound with respect to m. For the online algorithm, we first show that the tight competitive ratio of the classical list scheduling (LS) algorithm is 43. We then improve the upper bound on the competitive ratio for the previous algorithm, EFFm, to 1.2956. Additionally, we present a formula to compute the upper bound on the competitive ratio for any given m. For the case of three machines, we improve the lower bound to 1.1878 and propose an improved online algorithm with a tight competitive ratio of 1.2483.

Suggested Citation

  • Jiang, Yiwei & Wu, Mengjing & Chen, Xin & Dong, Jianming & Cheng, T.C.E. & Blazewicz, Jacek & Ji, Min, 2024. "Online early work scheduling on parallel machines," European Journal of Operational Research, Elsevier, vol. 315(3), pages 855-862.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:3:p:855-862
    DOI: 10.1016/j.ejor.2024.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724000092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xin & Liang, Yage & Sterna, Małgorzata & Wang, Wen & Błażewicz, Jacek, 2020. "Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date," European Journal of Operational Research, Elsevier, vol. 284(1), pages 67-74.
    2. Justkowiak, Jan-Erik & Kovalev, Sergey & Kovalyov, Mikhail Y. & Pesch, Erwin, 2023. "Single machine scheduling with assignable due dates to minimize maximum and total late work," European Journal of Operational Research, Elsevier, vol. 308(1), pages 76-83.
    3. Lee, Kangbok & Zheng, Feifeng & Pinedo, Michael L., 2019. "Online scheduling of ordered flow shops," European Journal of Operational Research, Elsevier, vol. 272(1), pages 50-60.
    4. Malgorzata Sterna & Kateryna Czerniachowska, 2017. "Polynomial Time Approximation Scheme for Two Parallel Machines Scheduling with a Common Due Date to Maximize Early Work," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 927-944, September.
    5. Leah Epstein, 2023. "Parallel solutions for preemptive makespan scheduling on two identical machines," Journal of Scheduling, Springer, vol. 26(1), pages 61-76, February.
    6. Xin Chen & Malgorzata Sterna & Xin Han & Jacek Blazewicz, 2016. "Scheduling on parallel identical machines with late work criterion: Offline and online cases," Journal of Scheduling, Springer, vol. 19(6), pages 729-736, December.
    7. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    8. C. N. Potts & L. N. Van Wassenhove, 1992. "Single Machine Scheduling to Minimize Total Late Work," Operations Research, INFORMS, vol. 40(3), pages 586-595, June.
    9. Györgyi, Péter & Kis, Tamás, 2020. "A common approximation framework for early work, late work, and resource leveling problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 129-137.
    10. Ma, Ran & Guo, Sainan, 2021. "Applying “Peeling Onion” approach for competitive analysis in online scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 290(1), pages 57-67.
    11. Lin, Ran & Wang, Jun-Qiang & Liu, Zhixin & Xu, Jun, 2023. "Best possible algorithms for online scheduling on identical batch machines with periodic pulse interruptions," European Journal of Operational Research, Elsevier, vol. 309(1), pages 53-64.
    12. Yinfeng Xu & Rongteng Zhi & Feifeng Zheng & Ming Liu, 2022. "Competitive algorithm for scheduling of sharing machines with rental discount," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 414-434, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    2. Chen, Xin & Miao, Qian & Lin, Bertrand M.T. & Sterna, Malgorzata & Blazewicz, Jacek, 2022. "Two-machine flow shop scheduling with a common due date to maximize total early work," European Journal of Operational Research, Elsevier, vol. 300(2), pages 504-511.
    3. Györgyi, Péter & Kis, Tamás, 2020. "A common approximation framework for early work, late work, and resource leveling problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 129-137.
    4. Xiaofei Liu & Yajie Li & Weidong Li & Jinhua Yang, 2023. "Combinatorial approximation algorithms for the maximum bounded connected bipartition problem," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-21, January.
    5. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    6. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
    7. Chen, Xin & Liang, Yage & Sterna, Małgorzata & Wang, Wen & Błażewicz, Jacek, 2020. "Fully polynomial time approximation scheme to maximize early work on parallel machines with common due date," European Journal of Operational Research, Elsevier, vol. 284(1), pages 67-74.
    8. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
    9. Dvir Shabtay, 2023. "A new perspective on single-machine scheduling problems with late work related criteria," Annals of Operations Research, Springer, vol. 322(2), pages 947-966, March.
    10. Sang, Yao-Wen & Wang, Jun-Qiang & Sterna, Małgorzata & Błażewicz, Jacek, 2023. "Single machine scheduling with due date assignment to minimize the total weighted lead time penalty and late work," Omega, Elsevier, vol. 121(C).
    11. Yunhong Min & Byung-Cheon Choi & Myoung-Ju Park & Kyung Min Kim, 2023. "A parallel-machine scheduling problem with an antithetical property to maximize total weighted early work," 4OR, Springer, vol. 21(3), pages 421-437, September.
    12. Justkowiak, Jan-Erik & Kovalev, Sergey & Kovalyov, Mikhail Y. & Pesch, Erwin, 2023. "Single machine scheduling with assignable due dates to minimize maximum and total late work," European Journal of Operational Research, Elsevier, vol. 308(1), pages 76-83.
    13. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    14. Rubing Chen & Jinjiang Yuan & C.T. Ng & T.C.E. Cheng, 2019. "Single‐machine scheduling with deadlines to minimize the total weighted late work," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 582-595, October.
    15. Malgorzata Sterna & Kateryna Czerniachowska, 2017. "Polynomial Time Approximation Scheme for Two Parallel Machines Scheduling with a Common Due Date to Maximize Early Work," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 927-944, September.
    16. Xin Chen & Sergey Kovalev & Małgorzata Sterna & Jacek Błażewicz, 2021. "Mirror scheduling problems with early work and late work criteria," Journal of Scheduling, Springer, vol. 24(5), pages 483-487, October.
    17. Shi-Sheng Li & Ren-Xia Chen, 2022. "Minimizing total weighted late work on a single-machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1330-1355, September.
    18. Leah Epstein, 2023. "Parallel solutions for ordinal scheduling with a small number of machines," Journal of Combinatorial Optimization, Springer, vol. 46(1), pages 1-24, August.
    19. Peng Liu & Ying Chen, 2022. "Differential Game Model of Shared Manufacturing Supply Chain Considering Low-Carbon Emission Reduction," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    20. Imed Kacem & Hans Kellerer & Yann Lanuel, 2015. "Approximation algorithms for maximizing the weighted number of early jobs on a single machine with non-availability intervals," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 403-412, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:3:p:855-862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.