IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v234y2014i3p885-897.html
   My bibliography  Save this article

Eco-efficiency and eco-productivity change over time in a multisectoral economic system

Author

Listed:
  • Mahlberg, Bernhard
  • Luptacik, Mikulas

Abstract

We measure eco-efficiency of an economy by means of an augmented Leontief input–output model extended by constraints for primary inputs. Using a multi-objective optimisation model the eco-efficiency frontier of the economy is generated. The results of these multi-objective optimisation problems define eco-efficient virtual decision making units (DMUs). The eco-efficiency is obtained as a solution of a data envelopment analysis (DEA) model with virtual DMUs defining the potential and a DMU describing the actual performance of the economy. This procedure is then extended to an intertemporal approach in the spirit of the Luenberger productivity indicator. This indicator permits decomposing eco-productivity change into eco-efficiency change and eco-technical change. The indicator is then further decompounded in a way that enables us to examine the contributions of individual production factors, undesirable as well as desirable outputs to eco-productivity change over time. For illustration purposes the proposed model is applied to investigate eco-productivity growth of the Austrian economy.

Suggested Citation

  • Mahlberg, Bernhard & Luptacik, Mikulas, 2014. "Eco-efficiency and eco-productivity change over time in a multisectoral economic system," European Journal of Operational Research, Elsevier, vol. 234(3), pages 885-897.
  • Handle: RePEc:eee:ejores:v:234:y:2014:i:3:p:885-897
    DOI: 10.1016/j.ejor.2013.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171300934X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mikulas Luptacik & Bernhard Bohm, 1999. "A Consistent Formulation of the Leontief Pollution Model," Economic Systems Research, Taylor & Francis Journals, vol. 11(3), pages 263-276.
    2. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    3. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    4. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528.
    5. Forsund, Finn R., 2009. "Good Modelling of Bad Outputs: Pollution and Multiple-Output Production," International Review of Environmental and Resource Economics, now publishers, vol. 3(1), pages 1-38, August.
    6. Wolfgang Koller & Robert Stehrer, 2010. "Trade Integration, Outsourcing And Employment In Austria: A Decomposition Approach," Economic Systems Research, Taylor & Francis Journals, vol. 22(3), pages 237-261.
    7. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    8. Pethig, Rudiger, 2006. "Non-linear production, abatement, pollution and materials balance reconsidered," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 185-204, March.
    9. Aparicio, Juan & Pastor, Jesus T. & Zofio, Jose L., 2013. "On the inconsistency of the Malmquist–Luenberger index," European Journal of Operational Research, Elsevier, vol. 229(3), pages 738-742.
    10. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    11. Kern O. Kymn & J. R. Norsworthy, 1976. "A Review of Industry Aggregation in Input-Output Models," The American Economist, Sage Publications, vol. 20(1), pages 5-10, March.
    12. Sarkis, Joseph & Cordeiro, James J., 2001. "An empirical evaluation of environmental efficiencies and firm performance: Pollution prevention versus end-of-pipe practice," European Journal of Operational Research, Elsevier, vol. 135(1), pages 102-113, November.
    13. Dietzenbacher, Erik & Hoen, Alex R, 1998. "Deflation of Input-Output Tables from the User's Point of View: A Heuristic Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 44(1), pages 111-122, March.
    14. Erik Dietzenbacher & Alex R. Hoen, 1998. "Deflation Of Input‐Output Tables From The User'S Point Of View: A Heuristic Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 44(1), pages 111-122, March.
    15. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    16. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    17. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    18. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    19. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    20. Olsen, J. Asger, 2000. "Aggregation in macroeconomic models: an empirical input-output approach," Economic Modelling, Elsevier, vol. 17(4), pages 545-558, December.
    21. Dyckhoff, H. & Allen, K., 2001. "Measuring ecological efficiency with data envelopment analysis (DEA)," European Journal of Operational Research, Elsevier, vol. 132(2), pages 312-325, July.
    22. Udo Ebert & Heinz Welsch, 2007. "Environmental Emissions and Production Economics: Implications of the Materials Balance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 287-293.
    23. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    24. Daniel Tyteca, 1997. "Linear Programming Models for the Measurement of Environmental Performance of Firms—Concepts and Empirical Results," Journal of Productivity Analysis, Springer, vol. 8(2), pages 183-197, May.
    25. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    26. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    2. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    3. M. Lábaj & M. Luptáčik & E. Nežinský, 2014. "Data envelopment analysis for measuring economic growth in terms of welfare beyond GDP," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(3), pages 407-424, August.
    4. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    5. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    6. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    7. Mahlberg, Bernhard & Sahoo, Biresh K., 2011. "Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application," International Journal of Production Economics, Elsevier, vol. 131(2), pages 721-726, June.
    8. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    9. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    10. Finn R. Førsund, 2018. "Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance," Empirical Economics, Springer, vol. 54(1), pages 67-99, February.
    11. Forsund, Finn R., 2009. "Good Modelling of Bad Outputs: Pollution and Multiple-Output Production," International Review of Environmental and Resource Economics, now publishers, vol. 3(1), pages 1-38, August.
    12. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    13. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    14. Benjamin Hampf, 2018. "Measuring inefficiency in the presence of bad outputs: Does the disposability assumption matter?," Empirical Economics, Springer, vol. 54(1), pages 101-127, February.
    15. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    16. Subhash C. Ray & Shilpa Sethia, 2023. "A State-Level Resource Allocation Model for Emission Reduction and Efficiency Improvement in Thermal Power Plants," Working papers 2023-08, University of Connecticut, Department of Economics.
    17. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
    18. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    19. Kenneth Løvold Rødseth, 2017. "Environmental regulations and allocative efficiency: application to coal-to-gas substitution in the U.S. electricity sector," Journal of Productivity Analysis, Springer, vol. 47(2), pages 129-142, April.
    20. Amer Ait Sidhoum, 2023. "Assessing the contribution of farmers’ working conditions to productive efficiency in the presence of uncertainty, a nonparametric approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8601-8622, August.

    More about this item

    Keywords

    Data envelopment analysis; Luenberger indicator; Multi-objective optimisation; Neoclassical growth accounting;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:234:y:2014:i:3:p:885-897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.