IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v487y2024ics0304380023002946.html
   My bibliography  Save this article

Dynamic simulation and projection of land use change using system dynamics model in the Chinese Tianshan mountainous region, central Asia

Author

Listed:
  • Zhang, Zhengrong
  • Li, Xuemei
  • Liu, Xinyu
  • Zhao, Kaixin

Abstract

A critical step in alleviating the contradiction between human activities and land systems is to project and analyze land use change traits in various scenarios to furnish a basis for formulating economic development and ecological conservation strategies. However, few studies have examined land use change using the system dynamics (SD) model and patch-generating land use simulation (PLUS) model in the Chinese Tianshan mountainous region (CTMR) affected by different economic growth patterns and climate change contexts. Therefore, based on the Shared Socioeconomic Pathways and Representative Concentration Pathways (SSPs-RCPs) scenarios, we attempted to construct a regional SD model (RSDM) including population, economic, land, and climate subsystems. Then, the coupled model by combining RSDM and PLUS was employed to simulate and project land use/cover changes (LUCC) in the CTMR at the regional level to explore the spatial distribution of land and its pattern of change in different climate contexts. The SD model is an effective method that can simulate the nonlinear behavior of a complex system and predict its evolution through the interactions and feedback relationships between different influencing factors. The PLUS model is an effective tool that can be used to simulate the evolution of land patches and capture the extent to which the driving factors contribute to LUCC. The relative errors were less than 5%, and the total accuracy of PLUS model was 91.77%. The above results demonstrated the effectiveness of RSDM and PLUS model in modeling LUCC across the CTMR. From 2005 to 2020, there was an expansion trend in the area of forest and construction land as well as in the area of cultivated land, while the grassland area displayed a significant decline. By 2040, the area of unused land, grassland, and water is expected to demonstrate a decreasing trend while other land types increase, with construction land showing the most significant increase of 101.37% under the SSP585 scenario. It is anticipated to expand mainly to cultivated land and grassland around cities. The cultivated land is expected to primarily encroach on the regions of unused land and grassland under the three scenarios, reaching the expansion demand. As opposed to the scenarios of SSP126 and SSP245, the SSP585 scenario distribution of the cultivated land patches will be more compact and denser. The SSP126 and SSP245 scenarios will exhibit similar patterns of future spatial distribution of land. The SSP585 scenario is anticipated to display marked differences. According to the three scenarios, grassland degradation will be severe and require increased grassland protection. The findings can offer novel perspective concepts with regard to future ecological and environmental management, judicious distribution of land resources, and sustainable progression in the CTMR.

Suggested Citation

  • Zhang, Zhengrong & Li, Xuemei & Liu, Xinyu & Zhao, Kaixin, 2024. "Dynamic simulation and projection of land use change using system dynamics model in the Chinese Tianshan mountainous region, central Asia," Ecological Modelling, Elsevier, vol. 487(C).
  • Handle: RePEc:eee:ecomod:v:487:y:2024:i:c:s0304380023002946
    DOI: 10.1016/j.ecolmodel.2023.110564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023002946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfgang Cramer & Joël Guiot & Marianela Fader & Joaquim Garrabou & Jean-Pierre Gattuso & Ana Iglesias & Manfred A. Lange & Piero Lionello & Maria Carmen Llasat & Shlomit Paz & Josep Peñuelas & Maria , 2018. "Climate change and interconnected risks to sustainable development in the Mediterranean," Nature Climate Change, Nature, vol. 8(11), pages 972-980, November.
    2. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    3. Qinglong Ding & Yang Chen & Lingtong Bu & Yanmei Ye, 2021. "Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model," IJERPH, MDPI, vol. 18(5), pages 1-19, March.
    4. Li, Su-Yuan & Miao, Li-Juan & Jiang, Zhi-Hong & Wang, Guo-Jie & Gnyawali, Kaushal Raj & Zhang, Jing & Zhang, Hui & Fang, Ke & He, Yu & Li, Chun, 2020. "Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(3), pages 210-217.
    5. Tan, Jianbo & Li, Ainong & Lei, Guangbin & Xie, Xinyao, 2019. "A SD-MaxEnt-CA model for simulating the landscape dynamic of natural ecosystem by considering socio-economic and natural impacts," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    6. Huang, Junlong & Tang, Zhuo & Liu, Dianfeng & He, Jianhua, 2020. "Ecological response to urban development in a changing socio-economic and climate context: Policy implications for balancing regional development and habitat conservation," Land Use Policy, Elsevier, vol. 97(C).
    7. Yee, Susan H. & Paulukonis, E. & Simmons, C. & Russell, M. & Fulford, R. & Harwell, L. & Smith, L.M., 2021. "Projecting effects of land use change on human well-being through changes in ecosystem services," Ecological Modelling, Elsevier, vol. 440(C).
    8. Dongbing Li & Yao Chang & Zibibula Simayi & Shengtian Yang, 2022. "Multi-Scenario Dynamic Simulation of Urban Agglomeration Development on the Northern Slope of the Tianshan Mountains in Xinjiang, China, with the Goal of High-Quality Urban Construction," Sustainability, MDPI, vol. 14(11), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    2. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    3. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    4. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    5. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    6. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    7. Heider, Katharina & Quaranta, Emanuele & García Avilés, José María & Rodriguez Lopez, Juan Miguel & Balbo, Andrea L. & Scheffran, Jürgen, 2022. "Reinventing the wheel – The preservation and potential of traditional water wheels in the terraced irrigated landscapes of the Ricote Valley, southeast Spain," Agricultural Water Management, Elsevier, vol. 259(C).
    8. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    9. Aina Maimó-Far & Alexis Tantet & Víctor Homar & Philippe Drobinski, 2020. "Predictable and Unpredictable Climate Variability Impacts on Optimal Renewable Energy Mixes: The Example of Spain," Energies, MDPI, vol. 13(19), pages 1-25, October.
    10. Lina Eklund & Abdulhakim Abdi & Mine Islar, 2017. "From Producers to Consumers: The Challenges and Opportunities of Agricultural Development in Iraqi Kurdistan," Land, MDPI, vol. 6(2), pages 1-14, June.
    11. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    12. Dike Zhang & Jianpeng Wang & Ying Wang & Lei Xu & Liang Zheng & Bowen Zhang & Yuzhe Bi & Hui Yang, 2022. "Is There a Spatial Relationship between Urban Landscape Pattern and Habitat Quality? Implication for Landscape Planning of the Yellow River Basin," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    13. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    14. Kai Jin & Fei Wang & Deliang Chen & Qiao Jiao & Lei Xia & Luuk Fleskens & Xingmin Mu, 2015. "Assessment of urban effect on observed warming trends during 1955–2012 over China: a case of 45 cities," Climatic Change, Springer, vol. 132(4), pages 631-643, October.
    15. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    16. Susana Toboso‐Chavero & Gara Villalba & Xavier Gabarrell Durany & Cristina Madrid‐López, 2021. "More than the sum of the parts: System analysis of the usability of roofs in housing estates," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1284-1299, October.
    17. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.
    18. Caiyao Xu & Lijie Pu & Ming Zhu & Jianguo Li & Xinjian Chen & Xiaohan Wang & Xuefeng Xie, 2016. "Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China," Sustainability, MDPI, vol. 8(8), pages 1-24, August.
    19. Hongyan Cai & Xinliang Xu, 2017. "Impacts of Built-Up Area Expansion in 2D and 3D on Regional Surface Temperature," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    20. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:487:y:2024:i:c:s0304380023002946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.