IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v85y2020icp74-86.html
   My bibliography  Save this article

On modeling heterogeneity in linear models using trend polynomials

Author

Listed:
  • Michaelides, Michael
  • Spanos, Aris

Abstract

The primary aim of the paper is to consider the problems and issues raised when the data exhibit time heterogeneity in the context of linear models. Ignoring time heterogeneity will undermine the reliability of inference and will give rise to untrustworthy evidence. Accounting for it using trend polynomials, however, is non-trivial because it raises several modeling issues. First, when the degree of the polynomial is greater than 4, or so, one needs to deal with the near-multicollinearity problem that arises. The second issue pertains to the type of polynomial that will adequately account for the time heterogeneity. Third, when the trend polynomials are treated as additional regressors, they will give rise to highly misleading statistical results. The paper investigates how different types of polynomials could deal with the near-multicollinearity and the modeling issues they raise, and makes recommendations to practitioners.

Suggested Citation

  • Michaelides, Michael & Spanos, Aris, 2020. "On modeling heterogeneity in linear models using trend polynomials," Economic Modelling, Elsevier, vol. 85(C), pages 74-86.
  • Handle: RePEc:eee:ecmode:v:85:y:2020:i:c:p:74-86
    DOI: 10.1016/j.econmod.2019.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999318315177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2019.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spanos, Aris, 2010. "Akaike-type criteria and the reliability of inference: Model selection versus statistical model specification," Journal of Econometrics, Elsevier, vol. 158(2), pages 204-220, October.
    2. Choi,In, 2015. "Almost All about Unit Roots," Cambridge Books, Cambridge University Press, number 9781107482500.
    3. Phillips, Peter C.B., 2005. "Challenges of trending time series econometrics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(5), pages 401-416.
    4. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    5. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    6. Friend, Irwin & Blume, Marshall E, 1970. "Measurement of Portfolio Performance Under Uncertainty," American Economic Review, American Economic Association, vol. 60(4), pages 561-575, September.
    7. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    8. Moore, Henry Ludwell, 1914. "Economics Cycles: Their law and cause," History of Economic Thought Books, McMaster University Archive for the History of Economic Thought, number moore1914.
    9. Spanos,Aris, 2019. "Probability Theory and Statistical Inference," Cambridge Books, Cambridge University Press, number 9781316636374.
    10. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    11. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    12. Blume, Marshall E, 1970. "Portfolio Theory: A Step Toward Its Practical Application," The Journal of Business, University of Chicago Press, vol. 43(2), pages 152-173, April.
    13. Spanos, Aris & McGuirk, Anya, 2002. "The problem of near-multicollinearity revisited: erratic vs systematic volatility," Journal of Econometrics, Elsevier, vol. 108(2), pages 365-393, June.
    14. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    15. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Michaelides & Niraj Poudyal, 2024. "Good risk measures, bad statistical assumptions, ugly risk forecasts," The Financial Review, Eastern Finance Association, vol. 59(2), pages 519-543, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
    2. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, September.
    3. Zanin, Luca, 2023. "A flexible estimation of sectoral portfolio exposure to climate transition risks in the European stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    4. Víctor M. Guerrero & Juan A. Mendoza, 2019. "On measuring economic growth from outer space: a single country approach," Empirical Economics, Springer, vol. 57(3), pages 971-990, September.
    5. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    6. Timothy K.M. Beatty & Erling Røed Larsen, 2005. "Using Engel curves to estimate bias in the Canadian CPI as a cost of living index," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 482-499, May.
    7. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    8. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    9. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    10. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    11. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
    12. Zi Ye & Giles Hooker & Stephen P. Ellner, 2021. "Generalized Single Index Models and Jensen Effects on Reproduction and Survival," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 492-512, September.
    13. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    15. Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
    16. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    17. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    18. Lauren N. Berry & Nathaniel E. Helwig, 2021. "Cross-Validation, Information Theory, or Maximum Likelihood? A Comparison of Tuning Methods for Penalized Splines," Stats, MDPI, vol. 4(3), pages 1-24, September.
    19. Nagler Thomas & Czado Claudia & Schellhase Christian, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    20. Yukun Zhang & Haocheng Li & Sarah Kozey Keadle & Charles E. Matthews & Raymond J. Carroll, 2019. "A Review of Statistical Analyses on Physical Activity Data Collected from Accelerometers," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 465-476, July.

    More about this item

    Keywords

    Linear model; t-Heterogeneity; Near-collinearity; Trend polynomial; Orthogonal polynomial; Orthonormal polynomial;
    All these keywords.

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:85:y:2020:i:c:p:74-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.