IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v58y2013icp162-176.html
   My bibliography  Save this article

A generative model for rank data based on insertion sort algorithm

Author

Listed:
  • Biernacki, Christophe
  • Jacques, Julien

Abstract

An original and meaningful probabilistic generative model for full rank data modelling is proposed. Rank data arise from a sorting mechanism which is generally unobservable for statisticians. Assuming that this process relies on paired comparisons, the insertion sort algorithm is known as being the best candidate in order to minimize the number of potential paired misclassifications for a moderate number of objects to be ordered. Combining this optimality argument with a Bernoulli event during a paired comparison step, a model that possesses desirable theoretical properties, among which are unimodality, symmetry and identifiability is obtained. Maximum likelihood estimation can also be performed easily through an EM or a SEM–Gibbs algorithm (depending on the number of objects to be ordered) by involving the latent initial presentation order of the objects. Finally, the practical relevance of the proposal is illustrated through its adequacy with several real data sets and a comparison with a standard rank data model.

Suggested Citation

  • Biernacki, Christophe & Jacques, Julien, 2013. "A generative model for rank data based on insertion sort algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 162-176.
  • Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:162-176
    DOI: 10.1016/j.csda.2012.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003118
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
    2. Gormley, Isobel Claire & Murphy, Thomas Brendan, 2008. "Exploring Voting Blocs Within the Irish Electorate," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1014-1027.
    3. R. L. Plackett, 1975. "The Analysis of Permutations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(2), pages 193-202, June.
    4. Isobel Claire Gormley & Thomas Brendan Murphy, 2006. "Analysis of Irish third‐level college applications data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 361-379, March.
    5. Murphy, Thomas Brendan & Martin, Donal, 2003. "Mixtures of distance-based models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 645-655, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuller, M. & Beutler, P. & Lienert, J., 2023. "Preference change in stakeholder group-decision processes in the public sector: Extent, causes and implications," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1268-1285.
    2. Christophe Biernacki & Alexandre Lourme, 2019. "Unifying data units and models in (co-)clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 7-31, March.
    3. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    4. Antonio D’Ambrosio & Carmela Iorio & Michele Staiano & Roberta Siciliano, 2019. "Median constrained bucket order rank aggregation," Computational Statistics, Springer, vol. 34(2), pages 787-802, June.
    5. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    6. Andrea Bonanomi & Marta Nai Ruscone & Silvia Angela Osmetti, 2017. "Defining subjects distance in hierarchical cluster analysis by copula approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 859-872, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    2. Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
    3. Irurozki, Ekhine & Calvo, Borja & Lozano, Jose A., 2016. "PerMallows: An R Package for Mallows and Generalized Mallows Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i12).
    4. Cristina Mollica & Luca Tardella, 2017. "Bayesian Plackett–Luce Mixture Models for Partially Ranked Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 442-458, June.
    5. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    6. Cristina Mollica & Luca Tardella, 2021. "Bayesian analysis of ranking data with the Extended Plackett–Luce model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 175-194, March.
    7. Marie-Louise Lackner & Martin Lackner, 2017. "On the likelihood of single-peaked preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(4), pages 717-745, April.
    8. Antonio D’Ambrosio & Willem J. Heiser, 2016. "A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 774-794, September.
    9. Ekhine Irurozki & Borja Calvo & Jose A. Lozano, 2018. "Sampling and Learning Mallows and Generalized Mallows Models Under the Cayley Distance," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 1-35, March.
    10. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    11. Baker, Rose D. & McHale, Ian G., 2014. "A dynamic paired comparisons model: Who is the greatest tennis player?," European Journal of Operational Research, Elsevier, vol. 236(2), pages 677-684.
    12. Volodymyr Melnykov, 2013. "Finite mixture modelling in mass spectrometry analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 573-592, August.
    13. Shipra Agrawal & Vashist Avadhanula & Vineet Goyal & Assaf Zeevi, 2019. "MNL-Bandit: A Dynamic Learning Approach to Assortment Selection," Operations Research, INFORMS, vol. 67(5), pages 1453-1485, September.
    14. François Caron & Emily B. Fox, 2017. "Sparse graphs using exchangeable random measures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1295-1366, November.
    15. Liam Delaney & Colm Harmon & Cathy Redmond, 2010. "Parental Education, Grade Attainment & Earnings Expectations among University Students," Working Papers 201035, Geary Institute, University College Dublin.
    16. Lee, Paul H. & Yu, Philip L.H., 2010. "Distance-based tree models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1672-1682, June.
    17. Keane, Michael & Ketcham, Jonathan & Kuminoff, Nicolai & Neal, Timothy, 2021. "Evaluating consumers’ choices of Medicare Part D plans: A study in behavioral welfare economics," Journal of Econometrics, Elsevier, vol. 222(1), pages 107-140.
    18. Jose Blanchet & Guillermo Gallego & Vineet Goyal, 2016. "A Markov Chain Approximation to Choice Modeling," Operations Research, INFORMS, vol. 64(4), pages 886-905, August.
    19. Švendová, Vendula & Schimek, Michael G., 2017. "A novel method for estimating the common signals for consensus across multiple ranked lists," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 122-135.
    20. Denny, Kevin & Doyle, Orla & McMullin, Patricia & O'Sullivan, Vincent, 2014. "Money, mentoring and making friends: The impact of a multidimensional access program on student performance," Economics of Education Review, Elsevier, vol. 40(C), pages 167-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:162-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.