IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923004800.html
   My bibliography  Save this article

Deep learning criminal networks

Author

Listed:
  • Ribeiro, Haroldo V.
  • Lopes, Diego D.
  • Pessa, Arthur A.B.
  • Martins, Alvaro F.
  • da Cunha, Bruno R.
  • Gonçalves, Sebastián
  • Lenzi, Ervin K.
  • Hanley, Quentin S.
  • Perc, Matjaž

Abstract

Recent advances in deep learning methods have enabled researchers to develop and apply algorithms for the analysis and modeling of complex networks. These advances have sparked a surge of interest at the interface between network science and machine learning. Despite this, the use of machine learning methods to investigate criminal networks remains surprisingly scarce. Here, we explore the potential of graph convolutional networks to learn patterns among networked criminals and to predict various properties of criminal networks. Using empirical data from political corruption, criminal police intelligence, and criminal financial networks, we develop a series of deep learning models based on the GraphSAGE framework that are able to recover missing criminal partnerships, distinguish among types of associations, predict the amount of money exchanged among criminal agents, and even anticipate partnerships and recidivism of criminals during the growth dynamics of corruption networks, all with impressive accuracy. Our deep learning models significantly outperform previous shallow learning approaches and produce high-quality embeddings for node and edge properties. Moreover, these models inherit all the advantages of the GraphSAGE framework, including the generalization to unseen nodes and scaling up to large graph structures.

Suggested Citation

  • Ribeiro, Haroldo V. & Lopes, Diego D. & Pessa, Arthur A.B. & Martins, Alvaro F. & da Cunha, Bruno R. & Gonçalves, Sebastián & Lenzi, Ervin K. & Hanley, Quentin S. & Perc, Matjaž, 2023. "Deep learning criminal networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004800
    DOI: 10.1016/j.chaos.2023.113579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keith T. Butler & Daniel W. Davies & Hugh Cartwright & Olexandr Isayev & Aron Walsh, 2018. "Machine learning for molecular and materials science," Nature, Nature, vol. 559(7715), pages 547-555, July.
    2. Johannes Wachs & J'anos Kert'esz, 2019. "A network approach to cartel detection in public auction markets," Papers 1906.08667, arXiv.org.
    3. Adi L Tarca & Vincent J Carey & Xue-wen Chen & Roberto Romero & Sorin Drăghici, 2007. "Machine Learning and Its Applications to Biology," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Li & Ruotian Zhang & Yaosen Min & Dacheng Ma & Dan Zhao & Jianyang Zeng, 2023. "A knowledge-guided pre-training framework for improving molecular representation learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Stephen Gang Wu & Yuxuan Wang & Wu Jiang & Tolutola Oyetunde & Ruilian Yao & Xuehong Zhang & Kazuyuki Shimizu & Yinjie J Tang & Forrest Sheng Bao, 2016. "Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-22, April.
    3. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    5. De Leverano, Adriano, 2023. "Clustered bids in first-price auctions: Collusion or competition?," Economics Letters, Elsevier, vol. 233(C).
    6. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Granlund, David & Rudholm, Niklas, 2023. "Calculating the probability of collusion based on observed price patterns," Umeå Economic Studies 1014, Umeå University, Department of Economics, revised 13 Oct 2023.
    8. Gabrielli, M. Florencia & Willington, Manuel, 2023. "Estimating damages from bidding rings in first-price auctions," Economic Modelling, Elsevier, vol. 126(C).
    9. Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Parag Parashar & Chun Han Chen & Chandni Akbar & Sze Ming Fu & Tejender S Rawat & Sparsh Pratik & Rajat Butola & Shih Han Chen & Albert S Lin, 2019. "Analytics-statistics mixed training and its fitness to semisupervised manufacturing," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-18, August.
    11. Huziel E. Sauceda & Luis E. Gálvez-González & Stefan Chmiela & Lauro Oliver Paz-Borbón & Klaus-Robert Müller & Alexandre Tkatchenko, 2022. "BIGDML—Towards accurate quantum machine learning force fields for materials," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Sukriti Manna & Troy D. Loeffler & Rohit Batra & Suvo Banik & Henry Chan & Bilvin Varughese & Kiran Sasikumar & Michael Sternberg & Tom Peterka & Mathew J. Cherukara & Stephen K. Gray & Bobby G. Sumpt, 2022. "Learning in continuous action space for developing high dimensional potential energy models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Kangming Li & Daniel Persaud & Kamal Choudhary & Brian DeCost & Michael Greenwood & Jason Hattrick-Simpers, 2023. "Exploiting redundancy in large materials datasets for efficient machine learning with less data," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Pessa, Arthur A.B. & Zola, Rafael S. & Perc, Matjaž & Ribeiro, Haroldo V., 2022. "Determining liquid crystal properties with ordinal networks and machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    16. Kai Li & Jifeng Wang & Yuanyuan Song & Ying Wang, 2023. "Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Lyaqini, S. & Nachaoui, M. & Hadri, A., 2022. "An efficient primal-dual method for solving non-smooth machine learning problem," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. Yasuhiro Yoshikai & Tadahaya Mizuno & Shumpei Nemoto & Hiroyuki Kusuhara, 2024. "Difficulty in chirality recognition for Transformer architectures learning chemical structures from string representations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Özhan Şimşek, 2024. "Machine Learning Offers Insights into the Impact of In Vitro Drought Stress on Strawberry Cultivars," Agriculture, MDPI, vol. 14(2), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.