IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924005889.html
   My bibliography  Save this article

Impact of wind on solar-induced natural ventilation through double-skin facade

Author

Listed:
  • Tao, Yao
  • Yan, Yihuan
  • Tu, Jiyuan
  • Shi, Long

Abstract

Although wind-buoyancy interactions have been widely explored, their mixing associated with semi-transparent facades are not yet clearly understood. This gap greatly restraints the implementation of naturally ventilated double-skin facades (NVDSFs). In this study, the impact of wind on the buoyancy flow in an NVDSF was investigated on a range of wind speeds, wind angles, and solar radiation intensities. The wind's realistic impinging associated with solar radiation's transportation between facades are revealed. Results present three aspects: the impact of wind on façade temperatures; the counteraction of wind on buoyant outflow; and defining and correlating the ‘critical wind velocity’ according to targeted natural ventilation rates. Results correlated the additional temperature drops on the outer glazing for wind speed 0.125–1.0 m/s, attack angles 5° ∼ 85° and solar radiation between 200–1000W/m2. The wind at 1 m/s and 5° can cause 10.5% reduction in façade temperature. By proposing a ‘wind inflow coefficient’, we established an empirical model to calculate the total ventilation rate under the mixed wind-buoyancy effect. Furthermore, an important concept – ‘critical wind velocity’, was introduced accordingly. It indicates the wind velocity under which the targeted natural ventilation can be met for an NVDSF for different solar conditions, e.g. the velocity at which the wind cancels out the buoyant outflow or below which the indoor ventilation can be satisfied. The novel correlations for the combination of mixed wind-buoyancy field with solar radiation and glazing materials can contribute significantly to NVDSFs under realistic environmental conditions.

Suggested Citation

  • Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005889
    DOI: 10.1016/j.apenergy.2024.123205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.