IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics030626192400549x.html
   My bibliography  Save this article

Flight trajectory and energy management coupled optimization for hybrid electric UAVs with adaptive sequential convex programming method

Author

Listed:
  • Tian, Weiyong
  • Liu, Li
  • Zhang, Xiaohui
  • Shao, Jiaqi

Abstract

Improving energy efficiency has important significance for hybrid electric UAVs. This paper aims at improving energy efficiency by maximizing utilization solar energy, reducing demand power and optimizing power allocation. The flight trajectory optimization and energy management are considered synthetically, and the coupled model is established. Adaptive sequential convex programming method (ASCP) is further proposed to solve this coupled model. The adaptive discretization method, fuzzy-based trust region update mechanism and two-stages solving strategy are proposed to improve its optimality and convergence. The optimized flight trajectory and global optimal battery SOC trajectory can be applied to trajectory tracking control and online energy management. Numerical simulation results show that ASCP can improve energy efficiency of hybrid electric UAVs. Compared with uniform discretized sequential convex programming (UDSCP) and Gauss pseudo-spectral method (GPM), it can improve solar energy by 9.3% and 24.1%. Energy management experiment results indicate that ASCP has excellent energy saving effect. Compared with nonlinear model predictive control (NMPC), fuzzy logic state machine (FLSM) and passive energy management strategy (PEMS), it can save hydrogen by 13.5%, 18.3%, and 22.2%, respectively. This work is conducive to promoting the application of renewable energy in UAVs.

Suggested Citation

  • Tian, Weiyong & Liu, Li & Zhang, Xiaohui & Shao, Jiaqi, 2024. "Flight trajectory and energy management coupled optimization for hybrid electric UAVs with adaptive sequential convex programming method," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s030626192400549x
    DOI: 10.1016/j.apenergy.2024.123166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400549X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s030626192400549x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.