IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924005476.html
   My bibliography  Save this article

Triple-layer optimization of distributed photovoltaic energy storage capacity for manufacturing enterprises considering carbon emissions and load management

Author

Listed:
  • Feng, Ran
  • Wang, Kai
  • Xu, Xu
  • Yu, Zi-Tao
  • Lin, Qingyang

Abstract

Distributed photovoltaic energy storage systems (DPVES) offer a proactive means of harnessing green energy to drive the decarbonization efforts of China's manufacturing sector. Capacity planning for these systems in manufacturing enterprises requires additional consideration such as carbon price and load management. This paper proposed a triple-layer optimization model for DPVES capacity configuration in the manufacturing sector using a chemical fibre manufacturing enterprise for demonstration. Refined photovoltaic generation and energy storage lifetime models were used. Beyond the considerations of electricity prices and meteorological conditions, we further studied the influence of carbon price and user load management on system capacity configuration and associated economic feasibility. Firstly, without considering carbon, minimizing user costs requires maximizing PV capacity up to the area limit while adjusting the ES to its optimal capacity and power. The optimal DPVES annually reduces the grid electricity consumption and carbon emissions, resulting in a 12.73% annual cost reduction. When considering the costs of carbon emissions, the carbon reduction contributed by DPVES can reduce the annual costs, making the whole system more economically feasible. However, the presence of substantial carbon emissions costs diminishes the economic feasibility of the ES, leading to a reduction of 24.51% in the optimal capacity configuration. Finally, user load management can further reduce system costs because it replaces some of the functions of energy storage. This results in a decrease of over 39% in the optimal energy storage capacity and a further reduction in related costs. Additionally, we found that load management by enterprises is more effective during the low carbon price than the high carbon price, implying that companies should implement load management as soon as possible.

Suggested Citation

  • Feng, Ran & Wang, Kai & Xu, Xu & Yu, Zi-Tao & Lin, Qingyang, 2024. "Triple-layer optimization of distributed photovoltaic energy storage capacity for manufacturing enterprises considering carbon emissions and load management," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005476
    DOI: 10.1016/j.apenergy.2024.123164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.