IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924005464.html
   My bibliography  Save this article

Application-oriented assessment of grid-connected PV-battery system with deep reinforcement learning in buildings considering electricity price dynamics

Author

Listed:
  • Chen, Qi
  • Kuang, Zhonghong
  • Liu, Xiaohua
  • Zhang, Tao

Abstract

Deep reinforcement learning (DRL) is decisive in addressing uncertainties in intelligent grid-building interactions. Using DRL algorithms, this research optimizes the operational strategy of the building's grid-connected photovoltaic-battery (PV-battery) system, and examines the economic impact of battery capacity, rooftop PV penetration, and electricity price volatility. Three algorithms are employed, each demonstrating remarkable superiority over rule-based control. Without rooftop PV, the rule-based control achieves the battery cost saving of 0.07 RMB/(d·kWh) with a capacity equal to the average building load, while the three algorithms showcase a more substantial range of 0.17–0.19 RMB/(d·kWh). The cooperation of PV introduces heightened intricacy to the DRL training process. Incorporating PV radiation information into the state space remarkably amplifies the battery's capability to consume surplus PV, thereby enhancing economic benefits within the DRL strategy. Consequently, the battery attains cost savings of approximately 0.46 RMB/(d·kWh) under 50% PV penetration. Finally, the study reveals that as electricity price volatility intensifies, the advantage of DRL becomes more conspicuous. As grid renewable penetration progresses from 24% to 50%, the superiority of DRL over rule-based control in battery's cost savings escalates from 0.11 to 0.17 RMB/(d·kWh).

Suggested Citation

  • Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2024. "Application-oriented assessment of grid-connected PV-battery system with deep reinforcement learning in buildings considering electricity price dynamics," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005464
    DOI: 10.1016/j.apenergy.2024.123163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.