IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924005397.html
   My bibliography  Save this article

Self-learning dynamic graph neural network with self-attention based on historical data and future data for multi-task multivariate residential air conditioning forecasting

Author

Listed:
  • Hu, Zehuan
  • Gao, Yuan
  • Sun, Luning
  • Mae, Masayuki
  • Imaizumi, Taiji

Abstract

In the context of escalating energy consumption in buildings, particularly from air conditioning (AC), the intelligent control of AC has become increasingly crucial. Accurately predicting future energy consumption for AC, the indoor environment, and determining the optimal settings have emerged as key challenges in intelligent AC control. In this study, a hybrid self-learning dynamic graph neural network with self-attention mechanism is proposed for AC forecasting. Addressing the gaps in the existing graph neural network applications, this model overcomes the limitations of static graph structures by constructing evolving adjacency matrices integrated with a gated recurrent unit and self-attention, effectively capturing the dynamic relationships between changing feature quantities. Additionally, a multi-task prediction (MTP) module that utilizes both past and future data is proposed. The MTP enables the application of a single model to multiple prediction tasks, thereby obviating the need for separate model training for each task. An experiment in an actual outdoor environment was designed to verify the predictive performance of the proposed model. The results indicate that the proposed model achieves superior accuracy for all target variables across different tasks under various AC conditions, particularly for variables with strong non-linearity, which showed a maximum improvement of 24.94% in correlation coefficient (R2) compared to long-short term memory network. With the MTP, the single model applied to multiple prediction tasks exhibited only a minimal sacrifice in accuracy, resulting in a mere 0.64% decrease in average R2 of all target variables for the proposed model.

Suggested Citation

  • Hu, Zehuan & Gao, Yuan & Sun, Luning & Mae, Masayuki & Imaizumi, Taiji, 2024. "Self-learning dynamic graph neural network with self-attention based on historical data and future data for multi-task multivariate residential air conditioning forecasting," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005397
    DOI: 10.1016/j.apenergy.2024.123156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.