IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924005373.html
   My bibliography  Save this article

A flexible urban load density-dependent framework for low-carbon distribution expansion planning in the presence of hybrid hydrogen/battery/wind/solar energy systems

Author

Listed:
  • Artis, Reza
  • Shivaie, Mojtaba
  • Weinsier, Philip D.

Abstract

Popularization of renewable energy sources (RESs), driven by the goal of carbon footprint mitigation in urban areas, invites unprecedented uncertainties into power distribution networks (PDNs). The uncertainties stemming from intrinsic intermittency of the RESs force network planners to meet flexibility requirements. For handling this challenge, multiple energy storage systems have recently emerged as a pivotal component across the PDNs. In this sense, the authors of this current study present here a new urban-load density-dependent framework for multi-period distribution expansion planning (DEP) considering hybrid hydrogen/battery/wind/solar energy systems for both flexibility enhancement and transition toward low-carbon PDNs. The proposed framework, from a new perspective, aims to divide the PDNs into multiple zones, according to load density of different urban areas under two simultaneous incommensurable objective functions: (i) minimization of investment and operation and maintenance costs; and, (ii) maximization of the supply-demand-related flexibility (SDF) improvement metric minus network-related flexibility (NTF) degradation metric. As the resultant optimization problem formulation has a challenging non-convex mixed-integer nonlinear structure, a fuzzy-based symphony orchestra search algorithm (F-SOSA) was employed to determine the final optimal solution. The effectiveness of the newly developed framework was verified through simulation results on standard 54-node and realistic 95-node distribution test networks. The results illustrate that the integration of hydrogen/battery energy systems brought about an increase of 9.52% and a decrease of 14.96% for the SDF and NTF, respectively, in comparison to their absence. One can further stat that applying these multiple energy systems is associated with a reduction of 20.64% of the total investment cost.

Suggested Citation

  • Artis, Reza & Shivaie, Mojtaba & Weinsier, Philip D., 2024. "A flexible urban load density-dependent framework for low-carbon distribution expansion planning in the presence of hybrid hydrogen/battery/wind/solar energy systems," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005373
    DOI: 10.1016/j.apenergy.2024.123154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.