IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924005233.html
   My bibliography  Save this article

Reasonable temperature differences for each stage and heat transfer between air and water in multi-stage air treatment system

Author

Listed:
  • Wang, Wentao
  • Liang, Chenjiyu
  • Li, Xianting

Abstract

Compared to traditional air conditioning systems, the multi-stage air treatment system has a higher energy efficiency by using lower grade energy, but the reasonable temperature differences for each stage (∆tstage) and heat transfer between air and water (Δttrans) needed to ensure an efficient system design remain unclear. To obtain the reasonable ∆tstage and Δttrans values required to maximize the energy efficiency of the multi-stage air treatment system, mathematical models are established to calculate the system's energy consumption. Six representative climate zones, two operating modes, and several working conditions are selected to evaluate the effects of different ∆tstage and Δttrans values on the performance of the multi-stage air treatment system. Reasonable ∆tstage and Δttrans values are obtained by minimizing the energy consumption of the system. The results show that: (1) the difference in reasonable ∆tstage and Δttrans under the different conditions is small, and it is possible to have a unified reasonable ∆tstage and Δttrans. (2) In the cooling season, the reasonable ∆tstage and Δttrans values are 6–8 and 4–5 °C, respectively; in the heating season, these values are 10–12 and 5–7 °C, respectively. (3) Compared to the traditional system, the maximum and annual average energy-saving rates of multi-stage air treatment system in an office building in Beijing are 34.5% and 17.9%, respectively. This study's results provide a solid foundation for building multi-stage air treatment system.

Suggested Citation

  • Wang, Wentao & Liang, Chenjiyu & Li, Xianting, 2024. "Reasonable temperature differences for each stage and heat transfer between air and water in multi-stage air treatment system," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005233
    DOI: 10.1016/j.apenergy.2024.123140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.