IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics030626192400494x.html
   My bibliography  Save this article

Energy optimization in freight train operations: Algorithmic development and testing

Author

Listed:
  • Aredah, Ahmed
  • Fadhloun, Karim
  • Rakha, Hesham A.

Abstract

This research applies multi-objective dynamic programming – specifically, goal programming – solved using a computationally efficient heuristic minimum path-finding algorithm (A*) to improve energy efficiency in freight train operations. The investigation focuses on the U.S. freight network, evaluating the impact of the proposed system on six powertrain technologies, namely diesel, biodiesel, diesel-hybrid, biodiesel-hybrid, hydrogen fuel cell, and battery electric on energy consumption and travel time. The primary findings indicate that when prioritizing energy reduction, diesel and biodiesel hybrids emerge as the most effective, achieving a 47% decrease in energy consumption compared to scenarios without optimization. Hydrogen and battery electric technologies demonstrate a 26% energy saving. In contrast, diesel and biodiesel powertrains show the least improvement, with a 21.5% reduction in energy consumption, accompanied by a 60% increase in travel time for all powertrains except hydrogen, which incurs only a 29% increase. Furthermore, when the multi-objective optimization model incorporates travel time, assigning a 70% weight to energy consumption and a 30% weight to travel time, the results are consistent. In this scenario, diesel and biodiesel hybrids yield an 11% reduction in energy consumption, followed by a 7% reduction for hydrogen fuel cells and a 6% reduction for battery electric trains, with diesel and biodiesel powertrains achieving a 5% reduction. This optimization leads to a mere 7% increase in travel time compared to the non-optimized scenario.

Suggested Citation

  • Aredah, Ahmed & Fadhloun, Karim & Rakha, Hesham A., 2024. "Energy optimization in freight train operations: Algorithmic development and testing," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s030626192400494x
    DOI: 10.1016/j.apenergy.2024.123111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400494X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s030626192400494x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.