IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924004653.html
   My bibliography  Save this article

Complementary operation based sizing and scheduling strategy for hybrid hydro-PV-wind generation systems connected to long-distance transmission lines

Author

Listed:
  • Wang, Fengjuan
  • Xu, Jiuping
  • Wang, Qingchun

Abstract

Wind and solar power are expected to play important roles in many countries to achieve carbon neutrality; however, their inherent instabilities pose significant threats to existing power grids. Because hydropower has been recognized as a viable compensatory resource for solar and wind energy uncertainties, many studies have sought to determine optimal scheduling strategies for hydro-PV, hydro-wind, and hydro-PV-wind systems. However, few studies have simultaneously considered the sizing and scheduling of large-scale hydro-PV-wind hybrid systems connected to long-distance transmission lines. Therefore, this paper develops a mathematical metric to measure the wind and solar output complementarity and incorporates it into a multi-objective sizing and scheduling model for a hybrid hydro-PV-wind system, in which resource complementarity, profit generation, system reliability, and power curtailment trade-offs are concurrently considered. The ɛ-constraint method is employed and decision makers’ attitude parameters are introduced to transform the proposed model into its equivalent single objective form. A case study in China reveals that the maximum wind and solar power output complementarity rate can be at least 0.19 for the studied hybrid hydro-PV-wind system. The incorporation of wind enables the hybrid hydro-PV-wind system to provide 4.11% more load than a hydro-PV system. In addition, if 2% of power curtailment is permitted, 1.53% more load can be served and 14.9% higher profits can be earned. To better explore the application of hybrid systems, management recommendations are provided for system operators, the power industry, and management administrations.

Suggested Citation

  • Wang, Fengjuan & Xu, Jiuping & Wang, Qingchun, 2024. "Complementary operation based sizing and scheduling strategy for hybrid hydro-PV-wind generation systems connected to long-distance transmission lines," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924004653
    DOI: 10.1016/j.apenergy.2024.123082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924004653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.