IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004823.html
   My bibliography  Save this article

Stochastic optimization of solar-based distributed energy system: An error-based scenario with a day-ahead and real-time dynamic scheduling approach

Author

Listed:
  • Yan, Yixian
  • Huang, Chang
  • Guan, Junquan
  • Zhang, Qi
  • Cai, Yang
  • Wang, Weiliang

Abstract

Distributed energy systems (DES) have garnered global attention as a promising solution for the expansion of renewable energy sources. However, stochastic uncertainty in renewable sources poses significant challenges in the collaboration optimization of system design and operation. In this study, a comparison analysis was conducted to assess the effectiveness of the conventional distribution-based scenario generation (DS) method for stochastic optimization of a distributed energy system in residential buildings. The results revealed that the DS method inaccurately captured extreme scenarios and exhibited limitations in operation optimization, leading to significant performance evaluation bias. To address these challenges, a novel stochastic optimization approach was developed based on error-based scenarios and a day-ahead and real-time dynamic scheduling strategy (ES-DRS). This approach incorporated solar energy prediction errors to more accurately characterize extreme scenarios, while also considering dynamic dual-scale meteorological boundary condition for rolling operation optimization. Furthermore, the buffer storage and coverage periods in ES-DRS were investigated and discussed during dynamic scheduling. Results demonstrated that when the buffer storage and coverage period were set at 36.22 kWh in summer and 24 h, respectively, the DES with ES-DRS achieved optimal multi-objective performance. This resulted in an annual total cost of 3.21 × 104 USD and CO2 emission of 5.82 tons, representing reductions of 26.45% and 61.06%, respectively, compared to the conventional strategy. Overall, this research contributes to advancing uncertainty analysis and scenario-based optimization in DES, highlighting the potential benefits of adopting the ES-DRS approach to maximize overall performance from both economic and environmental perspectives.

Suggested Citation

  • Yan, Yixian & Huang, Chang & Guan, Junquan & Zhang, Qi & Cai, Yang & Wang, Weiliang, 2024. "Stochastic optimization of solar-based distributed energy system: An error-based scenario with a day-ahead and real-time dynamic scheduling approach," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004823
    DOI: 10.1016/j.apenergy.2024.123099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.