IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004768.html
   My bibliography  Save this article

Real-time imaging of oil shale pyrolysis dynamics at nanoscale via environmental scanning electron microscopy

Author

Listed:
  • Pan, Bin
  • Yin, Xia
  • Yang, Zhengru
  • Ghanizadeh, Amin
  • Debuhr, Chris
  • Clarkson, Christopher R.
  • Gou, Feifei
  • Zhu, Weiyao
  • Ju, Yang
  • Iglauer, Stefan

Abstract

Pyrolysis is a promising technology to increase pore and fracture connectivity in oil shale and thereby accomplish commercial recovery of unconventional hydrocarbons. Herein, real-time oil shale pyrolysis dynamics are imaged at nanoscale via environmental scanning electron microscopy (imaging resolution of 58 nm/pixel, imaging speed of 1 frame per second, and heating temperature up to 750 °C). It is counterintuitively observed that 1) inorganic nano-fractures started to appear below 100 °C; 2) inorganic nano-fracture width had a non-monotonous relationship with temperature; and 3) organic kerogen areas decreased monotonously with increasing temperature. These findings will establish a standard benchmark for unconventional resource recovery, promote fundamental understanding of oil shale pyrolysis dynamics at nanoscale and provide key guidance on oil shale extraction at reservoir scale.

Suggested Citation

  • Pan, Bin & Yin, Xia & Yang, Zhengru & Ghanizadeh, Amin & Debuhr, Chris & Clarkson, Christopher R. & Gou, Feifei & Zhu, Weiyao & Ju, Yang & Iglauer, Stefan, 2024. "Real-time imaging of oil shale pyrolysis dynamics at nanoscale via environmental scanning electron microscopy," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004768
    DOI: 10.1016/j.apenergy.2024.123093
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.