IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics030626192400463x.html
   My bibliography  Save this article

Towards a fossil-free urban transport system: An intelligent cross-type transferable energy management framework based on deep transfer reinforcement learning

Author

Listed:
  • Huang, Ruchen
  • He, Hongwen
  • Su, Qicong

Abstract

Deep reinforcement learning (DRL) is now a research focus for the energy management of fuel cell vehicles (FCVs) to improve hydrogen utilization efficiency. However, since DRL-based energy management strategies (EMSs) need to be retrained when the types of FCVs are changed, it is a laborious task to develop DRL-based EMSs for different FCVs. Given that, this article introduces transfer learning (TL) into DRL to design a novel deep transfer reinforcement learning (DTRL) method and then innovatively proposes an intelligent transferable energy management framework between two different urban FCVs based on the designed DTRL method to achieve the reuse of well-trained EMSs. To begin, an enhanced soft actor-critic (SAC) algorithm integrating prioritized experience replay (PER) is formulated to be the studied DRL algorithm in this article. Then, an enhanced-SAC based EMS of a light fuel cell hybrid electric vehicle (FCHEV) is pre-trained by using massive real-world driving data. After that, the learned knowledge stored in the FCHEV's well-trained EMS is captured and then transferred into the EMS of a heavy-duty fuel cell hybrid electric bus (FCHEB). Finally, the FCHEB's EMS is fine-tuned in a stochastic environment to ensure adaptability to real driving conditions. Simulation results indicate that, compared to the state-of-the-art baseline EMS, the proposed DTRL-based EMS accelerates the convergence speed by 91.55% and improves the fuel economy by 6.78%. This article contributes to shortening the development cycle of DRL-based EMSs and improving the utilization efficiency of hydrogen energy in the urban transport sector.

Suggested Citation

  • Huang, Ruchen & He, Hongwen & Su, Qicong, 2024. "Towards a fossil-free urban transport system: An intelligent cross-type transferable energy management framework based on deep transfer reinforcement learning," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s030626192400463x
    DOI: 10.1016/j.apenergy.2024.123080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400463X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s030626192400463x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.