IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004550.html
   My bibliography  Save this article

Development of a rapid assessment tool for integrating thermal comfort in early design stage of energy-efficient office buildings

Author

Listed:
  • Chen, Wei-An
  • Wang, Yi-Han
  • Chang, Hsin-Jou
  • Hwang, Ruey-Lung

Abstract

Comprehending and predicting energy performance of existing buildings and new constructions is crucial towards decarbonization. Instead of utilizing simulation software, multiple regression models are utilized to predict building energy consumption while ensuring indoor thermal comfort to speed up this process. However, previous predictive models prioritize reducing energy demand, with limited focus on thermal comfort. This study aims to support decision-making during retrofitting and new construction planning though developing a prediction model. An air-conditioned office building served as a reference building for simulation. 21 design parameters were analyzed, including aspects of weather, building envelope, internal loads, ventilation, and temperature settings. Stepwise regression results unveiled the crucial variables in the final model, with 8, 9, 13, and 6 variables remaining for peak cooling load, annual cooling load, overheating hours (WE), and Environmental Quality Index for thermal comfort (EQITC) in the perimeter zones, and 5, 6, 8, and 5 variables for the core zones, respectively. Furthermore, insights into the important variables regarding cooling load and thermal comfort were respectively provided. Weather- and envelope-related variables, such as cooling degree-days, global solar radiation, solar heat gain coefficient (SHGC), and U-value, have the highest impacts on cooling load. For thermal comfort, variables including temperature setpoint, occupant activity level, and factors related to window sunlight transmission performance, such as SHGC, window area ratio, and overhang projection ratio, proved to be influential. Overall, this study provided accurate models for assessing optimal strategies for energy efficiency and thermal comfort during the early design phases, advancing building performance practices.

Suggested Citation

  • Chen, Wei-An & Wang, Yi-Han & Chang, Hsin-Jou & Hwang, Ruey-Lung, 2024. "Development of a rapid assessment tool for integrating thermal comfort in early design stage of energy-efficient office buildings," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004550
    DOI: 10.1016/j.apenergy.2024.123072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.