IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004471.html
   My bibliography  Save this article

Photovoltaic module temperature prediction using various machine learning algorithms: Performance evaluation

Author

Listed:
  • Keddouda, Abdelhak
  • Ihaddadene, Razika
  • Boukhari, Ali
  • Atia, Abdelmalek
  • Arıcı, Müslüm
  • Lebbihiat, Nacer
  • Ihaddadene, Nabila

Abstract

This paper presents data-driven models for photovoltaic module temperature prediction and analyzes the relation and effects of ambient conditions to module temperature. A total of 12 different machine learning and regression algorithms are implemented, with a large experimental dataset of 345,600 × 7. Prior to implementing those algorithms, data preprocessing is performed to prepare the datasets and determine the informative attributes for the models. Using PCA with module temperature as target to predict, the selected features for models' inputs were determined to be ambient temperature, solar radiation, wind speed, and relative humidity, and each algorithm is cross-validated and tuned with optimal performance parameters. Results show that while relative humidity is more likely to introduce less information to the model, other aforementioned features are the important parameters to predict the module temperature. While for linear modeling, LASSO algorithm provided the best performance, the ANN model demonstrated the best overall results as it produced the most accurate predictions with lowest errors. A similar performance is attained by the proposed non-linear model, KRR and Gradient Boosting algorithm, with a slight advantage to the KRR model. Furthermore, in comparison to experimental data, the ANN model and the proposed non-linear model provided an R2 values of 0.986 and 0.981, with a MAE of 0.982 and 1.476, and MSE of 2.181and 3.464, respectively. Moreover, the proposed model supplied accurate results when compared to models from literature in an out-of-sample testing, it also proven to be robust and accurate when used to predict the PV power output.

Suggested Citation

  • Keddouda, Abdelhak & Ihaddadene, Razika & Boukhari, Ali & Atia, Abdelmalek & Arıcı, Müslüm & Lebbihiat, Nacer & Ihaddadene, Nabila, 2024. "Photovoltaic module temperature prediction using various machine learning algorithms: Performance evaluation," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004471
    DOI: 10.1016/j.apenergy.2024.123064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.