IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004379.html
   My bibliography  Save this article

Community-to-vehicle-to-community (C2V2C) for inter-community electricity delivery and sharing via electric vehicle: Performance evaluation and robustness analysis

Author

Listed:
  • Board, Anthony
  • Sun, Yongjun
  • Huang, Pei
  • Xu, Tao

Abstract

Electric vehicles (EVs) possess untapped potential as mobile power banks for actively delivering electricity between different energy communities, known as Community-to-Vehicle-to-Community (C2V2C) service. While C2V2C represents an effective means of inter-community electricity sharing, limited research explores EVs' role in electricity delivery between locations. Suitable control approaches of EV charging for the C2V2C service are lacking, and it is unclear how robust the C2V2C service is and how its performance is affected by different factors. This paper aims to bridge these research gaps by developing an advanced control of EV smart charging/discharging to facilitate the C2V2C service. By comparing the power balance in the EVs' current-connecting and next-destination communities, the advanced control derives a target state-of-charge for the EVs in the current-connecting community, which can optimize the electricity delivery between the two communities. Then, the robustness of the C2V2C service is analyzed by evaluating its performances under different scenarios. Major factors like community combinations, renewable energy system (RES) configurations, EV battery capacity and numbers are examined for their impacts on C2V2C performance. The findings demonstrate that the C2V2C service significantly enhances energy balance across diverse community combinations, particularly in workplaces with substantial RES capacity. A large EV battery capacity is beneficial for performance improvements, but the impact diminishes at higher values due to limited surplus renewables availability. The increasing EV number enhances both electricity delivery capability and utilization of self-produced renewables. This study validated the effectiveness of the C2V2C service and provides valuable insights into optimizing its application across different scenarios.

Suggested Citation

  • Board, Anthony & Sun, Yongjun & Huang, Pei & Xu, Tao, 2024. "Community-to-vehicle-to-community (C2V2C) for inter-community electricity delivery and sharing via electric vehicle: Performance evaluation and robustness analysis," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004379
    DOI: 10.1016/j.apenergy.2024.123054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.