IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004367.html
   My bibliography  Save this article

Forecasting individual bids in real electricity markets through machine learning framework

Author

Listed:
  • Tang, Qinghu
  • Guo, Hongye
  • Zheng, Kedi
  • Chen, Qixin

Abstract

With the increasing uncertainty caused by the complexity of the world’s energy environment and the increasing penetration rate of renewable energy, it is significant to estimate the future operation of power markets in advance. Forecasting individual bids in spot electricity markets is a promising new method for achieving so, but it has not been fully studied due to the difficulty of forecasting a bid function. The idealization of existing optimization-based models decreases their practical effects in real markets. Thus, we propose a scalable forecasting framework that incorporates several customized state-of-art machine learning methods according to the characteristics of the bidding data. First, several low-rank approximation algorithms are customized to encode the high-dimensional bidding curves into low-dimensional feature spaces and reconstruct them from the predicted feature space. Second, a transformer-based multidimensional time series prediction algorithm is proposed to predict the bidding feature based on both related factors and historical bidding records. To appropriately evaluate the performances of the forecasting methods, we introduce a dynamic criterion based on the economic implications of bids. The comprehensive framework is tested based on actual market data from the Australian national electricity market, and in the empirical example, the feasibility and effectiveness of the proposed framework are demonstrated.

Suggested Citation

  • Tang, Qinghu & Guo, Hongye & Zheng, Kedi & Chen, Qixin, 2024. "Forecasting individual bids in real electricity markets through machine learning framework," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004367
    DOI: 10.1016/j.apenergy.2024.123053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.