IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924003787.html
   My bibliography  Save this article

A proactive energy management strategy for battery-powered autonomous systems

Author

Listed:
  • Li, Heng
  • Liu, Zheng
  • Yang, Yingze
  • Yang, Huihui
  • Shu, Boyu
  • Liu, Weirong

Abstract

Battery energy management systems have been studied in control communities for many years. This paper proposes a new perspective by integrating control and scheduling for battery-powered autonomous systems. This is motivated by the observations that battery closed-loop control can significantly improve the DC-bus stability but reduce the battery durability, while load scheduling can considerably improve the battery durability by smoothing the load power. In view of the above findings, we propose a proactive energy management strategy for the battery energy management system to improve both the DC-bus stability and battery durability. We first analyze the schedulability of load tasks to check if they are schedulable. Then, the power of schedulable loads is scheduled with an active load scheduling algorithm to smooth the fluctuation of battery current and extend the battery lifetime. Thereafter, the scheduled load power is integrated with a feedforward control to restrain DC-bus voltage fluctuation. In addition to the classical sporadic/periodic load tasks model, we propose a new aperiodic load task model to characterize the load power triggered by events in practical applications. An experimental platform is built to verify the effectiveness of the proposed proactive energy management method. Experimental results show that the proposed proactive energy management method can suppress the 15.71% DC-bus voltage fluctuation and reduce the 8.93% battery current fluctuation, extending the battery lifetime by 7.57% compared to existing energy management strategies.

Suggested Citation

  • Li, Heng & Liu, Zheng & Yang, Yingze & Yang, Huihui & Shu, Boyu & Liu, Weirong, 2024. "A proactive energy management strategy for battery-powered autonomous systems," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924003787
    DOI: 10.1016/j.apenergy.2024.122995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924003787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.