IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics030626192400360x.html
   My bibliography  Save this article

Modeling the impact of extreme summer drought on conventional and renewable generation capacity: Methods and a case study on the Eastern U.S. power system

Author

Listed:
  • Shuai, Hang
  • Li, Fangxing
  • Zhu, Jinxiang
  • Tingen II, William Jerome
  • Mukherjee, Srijib

Abstract

Across recent years, there has been a growing prevalence of extreme weather events throughout the United States, posing significant challenges to the reliable and resilient operation of power systems. Specifically, summer droughts threaten to severely reduce available generation capacity to meet regional electricity demand, potentially leading to power outages. This underscores the importance of accurate resource adequacy (RA) assessment to ensure the reliable operation of the nation’s energy infrastructure. Accurately evaluating the usable capacity of regional generation fleets is a challenging undertaking due to the intricate interactions between power systems and hydro-climatic systems. This paper proposes a systematic and analytical framework to evaluate the impacts of extreme summer drought events on the available capacity of various generating technologies, incorporating both meteorological and hydrologic factors. The framework provides detailed plant-level capacity derating models for hydroelectric, thermoelectric, and renewable power plants, facilitating evaluations with high temporal and spatial resolution. The application of the proposed impact assessment framework to the 2025 generation fleet of the real-world power system within the PJM and SERC regions of the United States yields insightful results. By analyzing the daily usable capacity of 6,055 at-risk generators across the study region, it shows that the summer capacity deration is most significant for hydroelectric and once-through thermal power plants, followed by recirculating thermal power plants and combustion turbines. In the event of the recurrence of the 2007 southeastern summer drought event in the near future, the generation fleet could experience a substantial reduction in available capacity, estimated at approximately 8.5 GW, compared to typical summer conditions. The sensitivity analysis reveals that the usable capacity of the generation fleet would suffer an even more significant decrease under conditions of increasingly severe summer droughts. The proposed approach and the findings of this study provide valuable methodologies and insights, empowering stakeholders to bolster the resilience of power systems against the potentially devastating effects of future extreme drought events.

Suggested Citation

  • Shuai, Hang & Li, Fangxing & Zhu, Jinxiang & Tingen II, William Jerome & Mukherjee, Srijib, 2024. "Modeling the impact of extreme summer drought on conventional and renewable generation capacity: Methods and a case study on the Eastern U.S. power system," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s030626192400360x
    DOI: 10.1016/j.apenergy.2024.122977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192400360X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s030626192400360x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.