IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922011722.html
   My bibliography  Save this article

Privacy-preserving federated learning for residential short-term load forecasting

Author

Listed:
  • Fernández, Joaquín Delgado
  • Menci, Sergio Potenciano
  • Lee, Chul Min
  • Rieger, Alexander
  • Fridgen, Gilbert

Abstract

With high levels of intermittent power generation and dynamic demand patterns, accurate forecasts for residential loads have become essential. Smart meters can play an important role when making these forecasts as they provide detailed load data. However, using smart meter data for load forecasting is challenging due to data privacy requirements. This paper investigates how these requirements can be addressed through a combination of federated learning and privacy preserving techniques such as differential privacy and secure aggregation. For our analysis, we employ a large set of residential load data and simulate how different federated learning models and privacy preserving techniques affect performance and privacy. Our simulations reveal that combining federated learning and privacy preserving techniques can secure both high forecasting accuracy and near-complete privacy. Specifically, we find that such combinations enable a high level of information sharing while ensuring privacy of both the processed load data and forecasting models. Moreover, we identify and discuss challenges of applying federated learning, differential privacy and secure aggregation for residential short-term load forecasting.

Suggested Citation

  • Fernández, Joaquín Delgado & Menci, Sergio Potenciano & Lee, Chul Min & Rieger, Alexander & Fridgen, Gilbert, 2022. "Privacy-preserving federated learning for residential short-term load forecasting," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011722
    DOI: 10.1016/j.apenergy.2022.119915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922011722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chen, 2020. "Designing a short-term load forecasting model in the urban smart grid system," Applied Energy, Elsevier, vol. 266(C).
    2. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Chun-Yao Lee & Chang-En Wu, 2020. "Short-Term Electricity Price Forecasting Based on Similar Day-Based Neural Network," Energies, MDPI, vol. 13(17), pages 1-15, August.
    5. KERAMIDAS Kimon & DIAZ VAZQUEZ Ana R. & WEITZEL Matthias & VANDYCK Toon & TAMBA Marie & TCHUNG-MING Stephane & SORIA RAMIREZ Antonio & KRAUSE Jette & VAN DINGENEN Rita & SO CHAI Qimin & FU Sha & WEN X, 2020. "Global Energy and Climate Outlook 2019: Electrification for the low-carbon transition," JRC Research Reports JRC119619, Joint Research Centre.
    6. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    7. Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
    8. Brophy Haney, A. & Jamasb, T. & Pollitt, M.G., 2009. "Smart Metering and Electricity Demand: Technology, Economics and International Experience," Cambridge Working Papers in Economics 0905, Faculty of Economics, University of Cambridge.
    9. Saurab Chhachhi & Fei Teng, 2021. "Market Value of Differentially-Private Smart Meter Data," Papers 2104.09898, arXiv.org.
    10. Chengdong Li & Zixiang Ding & Dongbin Zhao & Jianqiang Yi & Guiqing Zhang, 2017. "Building Energy Consumption Prediction: An Extreme Deep Learning Approach," Energies, MDPI, vol. 10(10), pages 1-20, October.
    11. Jin-Young Kim & Sung-Bae Cho, 2019. "Electric Energy Consumption Prediction by Deep Learning with State Explainable Autoencoder," Energies, MDPI, vol. 12(4), pages 1-14, February.
    12. Specht, Jan Martin & Madlener, Reinhard, 2019. "Energy Supplier 2.0: A conceptual business model for energy suppliers aggregating flexible distributed assets and policy issues raised," Energy Policy, Elsevier, vol. 135(C).
    13. Sławomir Bielecki & Tadeusz Skoczkowski & Lidia Sobczak & Janusz Buchoski & Łukasz Maciąg & Piotr Dukat, 2021. "Impact of the Lockdown during the COVID-19 Pandemic on Electricity Use by Residential Users," Energies, MDPI, vol. 14(4), pages 1-32, February.
    14. McKenna, Eoghan & Richardson, Ian & Thomson, Murray, 2012. "Smart meter data: Balancing consumer privacy concerns with legitimate applications," Energy Policy, Elsevier, vol. 41(C), pages 807-814.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
    2. Chen, Minghao & Sun, Yi & Xie, Zhiyuan & Lin, Nvgui & Wu, Peng, 2023. "An efficient and privacy-preserving algorithm for multiple energy hubs scheduling with federated and matching deep reinforcement learning," Energy, Elsevier, vol. 284(C).
    3. Marcel Antal & Vlad Mihailescu & Tudor Cioara & Ionut Anghel, 2022. "Blockchain-Based Distributed Federated Learning in Smart Grid," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
    4. Veerasamy, Veerapandiyan & Hu, Zhijian & Qiu, Haifeng & Murshid, Shadab & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2024. "Blockchain-enabled peer-to-peer energy trading and resilient control of microgrids," Applied Energy, Elsevier, vol. 353(PA).
    5. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    6. Liu, Yixing & Liu, Bo & Guo, Xiaoyu & Xu, Yiqiao & Ding, Zhengtao, 2023. "Household profile identification for retailers based on personalized federated learning," Energy, Elsevier, vol. 275(C).
    7. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Harshit Gupta & Piyush Agarwal & Kartik Gupta & Suhana Baliarsingh & O. P. Vyas & Antonio Puliafito, 2023. "FedGrid: A Secure Framework with Federated Learning for Energy Optimization in the Smart Grid," Energies, MDPI, vol. 16(24), pages 1-21, December.
    9. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo, 2023. "Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption," Energy, Elsevier, vol. 274(C).
    2. Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
    3. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
    4. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    5. Zheng, Peijun & Zhou, Heng & Liu, Jiang & Nakanishi, Yosuke, 2023. "Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture," Applied Energy, Elsevier, vol. 349(C).
    6. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    7. Burleyson, Casey D. & Rahman, Aowabin & Rice, Jennie S. & Smith, Amanda D. & Voisin, Nathalie, 2021. "Multiscale effects masked the impact of the COVID-19 pandemic on electricity demand in the United States," Applied Energy, Elsevier, vol. 304(C).
    8. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    9. Minseok Jang & Hyun Cheol Jeong & Taegon Kim & Dong Hee Suh & Sung-Kwan Joo, 2021. "Empirical Analysis of the Impact of COVID-19 Social Distancing on Residential Electricity Consumption Based on Demographic Characteristics and Load Shape," Energies, MDPI, vol. 14(22), pages 1-15, November.
    10. Chongchong Xu & Zhicheng Liao & Chaojie Li & Xiaojun Zhou & Renyou Xie, 2022. "Review on Interpretable Machine Learning in Smart Grid," Energies, MDPI, vol. 15(12), pages 1-31, June.
    11. Feuerriegel, Stefan & Bodenbenner, Philipp & Neumann, Dirk, 2016. "Value and granularity of ICT and smart meter data in demand response systems," Energy Economics, Elsevier, vol. 54(C), pages 1-10.
    12. Xiaorui Shao & Chang-Soo Kim & Palash Sontakke, 2020. "Accurate Deep Model for Electricity Consumption Forecasting Using Multi-Channel and Multi-Scale Feature Fusion CNN–LSTM," Energies, MDPI, vol. 13(8), pages 1-22, April.
    13. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    14. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    15. Chen, Sai & Song, Yan & Ding, Yueting & Zhang, Ming & Nie, Rui, 2021. "Using long short-term memory model to study risk assessment and prediction of China’s oil import from the perspective of resilience theory," Energy, Elsevier, vol. 215(PB).
    16. Fath U Min Ullah & Noman Khan & Tanveer Hussain & Mi Young Lee & Sung Wook Baik, 2021. "Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework," Mathematics, MDPI, vol. 9(6), pages 1-22, March.
    17. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    18. Xing, Yazhou & Zhang, Su & Wen, Peng & Shao, Limin & Rouyendegh, Babak Daneshvar, 2020. "Load prediction in short-term implementing the multivariate quantile regression," Energy, Elsevier, vol. 196(C).
    19. Salam, Abdulwahed & El Hibaoui, Abdelaaziz, 2021. "Energy consumption prediction model with deep inception residual network inspiration and LSTM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 97-109.
    20. Hyojoo Son & Changwan Kim, 2020. "A Deep Learning Approach to Forecasting Monthly Demand for Residential–Sector Electricity," Sustainability, MDPI, vol. 12(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922011722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.