IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v274y2020ics0306261920308412.html
   My bibliography  Save this article

Indicative energy technology assessment of hydrogen processing from biogenic municipal waste

Author

Listed:
  • Hammond, Geoffrey P.
  • Owen, Rachel E.
  • Rathbone, Richard R.

Abstract

An indicative appraisal has been undertaken of a combined Anaerobic Digestion and Steam Methane Reforming process to produce sustainable hydrogen from organic waste. The anaerobic digestion plant was based on the plant in Tilburg (The Netherlands), and was modelled from the kerbside organic waste collections through to methane production. Data on biogenic waste was obtained from a collection trial in a municipal area in the UK. This was scaled-up to match that of a Tilburg-like anaerobic digestion plant. The waste collection trials enabled the catchment area for an anaerobic digestion plant on a commercial scale to be estimated. A thermodynamic evaluation of the combined process included energy and exergy analysis in order to determine the efficiency of each process, as well as to identify the areas that lead to inefficiencies. The overall energy efficiency was 75% and the overall exergy efficiency was 60%. The main energy losses were associated with compressor inefficiencies. In contrast, the main exergy consumption was found to be due to the fermentation in the digestion tanks. Other hydrogen process efficiencies vary from 21% to 86%, with the higher efficiencies belonging to non-renewable processes. However, the sustainable hydrogen produced comes from entirely renewable sources (biogenic waste) and has the benefit of near-zero carbon emissions in contrast to fossil fuels. Finally, the case study included an indicative financial assessment of the collection to processing chain. A discounted payback period of less than 20 years was estimated with a modest annual charge for householders.

Suggested Citation

  • Hammond, Geoffrey P. & Owen, Rachel E. & Rathbone, Richard R., 2020. "Indicative energy technology assessment of hydrogen processing from biogenic municipal waste," Applied Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920308412
    DOI: 10.1016/j.apenergy.2020.115329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosen, M.A., 1996. "Thermodynamic investigation and comparison of selected production processes for hydrogen and hydrogen-derived fuels," Energy, Elsevier, vol. 21(12), pages 1079-1094.
    2. Hammond, Geoffrey P. & Mansell, Ross V.M., 2018. "A comparative thermodynamic evaluation of bioethanol processing from wheat straw," Applied Energy, Elsevier, vol. 224(C), pages 136-146.
    3. van Gool, W., 1987. "The value of energy carriers," Energy, Elsevier, vol. 12(6), pages 509-518.
    4. Spencer, Thomas & Pierfederici, Roberta & Sartor, Oliver & Berghmans, Nicolas & Samadi, Sascha & Fischedick, Manfred & Knoop, Katharina & Pye, Steve & Criqui, Patrick & Mathy, Sandrine & Capros, Pante, 2017. "Tracking sectoral progress in the deep decarbonisation of energy systems in Europe," Energy Policy, Elsevier, vol. 110(C), pages 509-517.
    5. Geoffrey P. Hammond, 2004. "Engineering Sustainability: Thermodynamics, Energy Systems and the Environment," Palgrave Macmillan Books, in: Adrian Winnett (ed.), Towards an Environment Research Agenda, chapter 8, pages 175-210, Palgrave Macmillan.
    6. Griffin, Paul W. & Hammond, Geoffrey P. & Norman, Jonathan B., 2018. "Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective," Applied Energy, Elsevier, vol. 227(C), pages 587-602.
    7. Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
    8. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    9. Hilkiah Igoni, A. & Ayotamuno, M.J. & Eze, C.L. & Ogaji, S.O.T. & Probert, S.D., 2008. "Designs of anaerobic digesters for producing biogas from municipal solid-waste," Applied Energy, Elsevier, vol. 85(6), pages 430-438, June.
    10. van Gool, Willem, 1992. "Exergy analysis of industrial processes," Energy, Elsevier, vol. 17(8), pages 791-803.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Choi, Hyunhong & Woo, JongRoul, 2022. "Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model," Applied Energy, Elsevier, vol. 313(C).
    3. Sun, Peng & Yun, Teng & Chen, Zhe, 2021. "Multi-objective robust optimization of multi-energy microgrid with waste treatment," Renewable Energy, Elsevier, vol. 178(C), pages 1198-1210.
    4. Kim, Ayeon & Yoo, Youngdon & Kim, Suhyun & Lim, Hankwon, 2021. "Comprehensive analysis of overall H2 supply for different H2 carriers from overseas production to inland distribution with respect to economic, environmental, and technological aspects," Renewable Energy, Elsevier, vol. 177(C), pages 422-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hammond, Geoffrey P., 2009. "Industrial energy analysis, thermodynamics and sustainability," Applied Energy, Elsevier, vol. 84(7-8), pages 675-700, July.
    2. Geoffrey P. Hammond & Adrian B. Winnett, 2009. "The Influence of Thermodynamic Ideas on Ecological Economics: An Interdisciplinary Critique," Sustainability, MDPI, vol. 1(4), pages 1-31, December.
    3. Munir, M.T. & Mohaddespour, Ahmad & Nasr, A.T. & Carter, Susan, 2021. "Municipal solid waste-to-energy processing for a circular economy in New Zealand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    5. Cudjoe, Dan & Wang, Hong & zhu, Bangzhu, 2022. "Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis," Energy, Elsevier, vol. 249(C).
    6. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    7. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    8. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
    9. Morin, Philippe & Marcos, Bernard & Moresoli, Christine & Laflamme, Claude B., 2010. "Economic and environmental assessment on the energetic valorization of organic material for a municipality in Quebec, Canada," Applied Energy, Elsevier, vol. 87(1), pages 275-283, January.
    10. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    11. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    12. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    13. van Gool, Willem, 1992. "Exergy analysis of industrial processes," Energy, Elsevier, vol. 17(8), pages 791-803.
    14. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    15. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    16. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    17. Hammond, Geoffrey P. & Mansell, Ross V.M., 2018. "A comparative thermodynamic evaluation of bioethanol processing from wheat straw," Applied Energy, Elsevier, vol. 224(C), pages 136-146.
    18. Khan, Yasir & Hassan, Taimoor & Guiqin, Huang & Nabi, Ghulam, 2023. "Analyzing the impact of natural resources and rule of law on sustainable environment: A proposed policy framework for BRICS economies," Resources Policy, Elsevier, vol. 86(PA).
    19. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    20. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920308412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.