IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp790-799.html
   My bibliography  Save this article

Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison

Author

Listed:
  • Fan, Jing-Li
  • Hou, Yun-Bing
  • Wang, Qian
  • Wang, Ce
  • Wei, Yi-Ming

Abstract

Addressing climate change requires the efforts of all countries with common but differentiated responsibilities. The mitigation responsibilities one country takes greatly depends on its national emission inventories. As a good complement to the production-based accounting (PBA) principle, consumption-based accounting (CBA) principle has been widely concerned. However, few studies focus on emissions equity issues temporally and spatially. In this paper, we explore the characteristics of production-based and consumption-based CO2 emissions for 14 major economies through multiple-dimension comparisons to get insight into the emissions equity comparisons among major emitters. In particular, four categories of economies with different dynamic features are divided based on their percentage differences between PBA and CBA emissions. Demographical and economic variables are additionally taken into consideration. The results indicate that France and Russia hold extreme characteristic on evaluating the emission difference between two principles, while China and Chinese Taiwan reveal uniquely increasingly larger gaps between two principle emissions. Besides, the per capita CBA emissions grows more prominently and possesses a more obviously positive correlation with their own per capita GDP which confirms that CBA principle is potentially attractive for estimating national emissions.

Suggested Citation

  • Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:790-799
    DOI: 10.1016/j.apenergy.2016.06.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    2. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    3. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    4. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    5. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    6. Robert C. Johnson, 2014. "Five Facts about Value-Added Exports and Implications for Macroeconomics and Trade Research," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 119-142, Spring.
    7. Guo, Jie & Zou, Le-Le & Wei, Yi-Ming, 2010. "Impact of inter-sectoral trade on national and global CO2 emissions: An empirical analysis of China and US," Energy Policy, Elsevier, vol. 38(3), pages 1389-1397, March.
    8. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    9. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    10. John Barrett & Glen Peters & Thomas Wiedmann & Kate Scott & Manfred Lenzen & Katy Roelich & Corinne Le Qu�r�, 2013. "Consumption-based GHG emission accounting: a UK case study," Climate Policy, Taylor & Francis Journals, vol. 13(4), pages 451-470, July.
    11. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    12. Muñoz, Pablo & Steininger, Karl W., 2010. "Austria's CO2 responsibility and the carbon content of its international trade," Ecological Economics, Elsevier, vol. 69(10), pages 2003-2019, August.
    13. Jing Tian & Hua Liao & Ce Wang, 2015. "Spatial–temporal variations of embodied carbon emission in global trade flows: 41 economies and 35 sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1125-1144, September.
    14. Harris, A.R. & Rogers, Michelle Marinich & Miller, Carol J. & McElmurry, Shawn P. & Wang, Caisheng, 2015. "Residential emissions reductions through variable timing of electricity consumption," Applied Energy, Elsevier, vol. 158(C), pages 484-489.
    15. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    16. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    17. Ferng, Jiun-Jiun, 2003. "Allocating the responsibility of CO2 over-emissions from the perspectives of benefit principle and ecological deficit," Ecological Economics, Elsevier, vol. 46(1), pages 121-141, August.
    18. Meng, Bo & Xue, Jinjun & Feng, Kuishuang & Guan, Dabo & Fu, Xue, 2013. "China’s inter-regional spillover of carbon emissions and domestic supply chains," Energy Policy, Elsevier, vol. 61(C), pages 1305-1321.
    19. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    20. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    21. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    22. Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012. "Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization," Applied Energy, Elsevier, vol. 92(C), pages 552-562.
    23. Erik Dietzenbacher & Bart Los & Robert Stehrer & Marcel Timmer & Gaaitzen de Vries, 2013. "The Construction Of World Input-Output Tables In The Wiod Project," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 71-98, March.
    24. Shan, Yuli & Liu, Zhu & Guan, Dabo, 2016. "CO2 emissions from China’s lime industry," Applied Energy, Elsevier, vol. 166(C), pages 245-252.
    25. Marcel P. Timmer & Abdul Azeez Erumban & Bart Los & Robert Stehrer & Gaaitzen J. de Vries, 2014. "Slicing Up Global Value Chains," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 99-118, Spring.
    26. Jesper Munksgaard & Lise-Lotte Pade & Jan Minx & Manfred Lenzen, 2005. "Influence of trade on national CO 2 emissions," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 23(4), pages 324-336.
    27. Bart Los & Marcel P. Timmer & Gaaitzen J. Vries, 2015. "How Global Are Global Value Chains? A New Approach To Measure International Fragmentation," Journal of Regional Science, Wiley Blackwell, vol. 55(1), pages 66-92, January.
    28. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karakaya, Etem & Yılmaz, Burcu & Alataş, Sedat, 2018. "How Production Based and Consumption Based Emissions Accounting Systems Change Climate Policy Analysis: The Case of CO2 Convergence," MPRA Paper 88781, University Library of Munich, Germany.
    2. Rui Huang & Klaus Hubacek & Kuishuang Feng & Xiaojie Li & Chao Zhang, 2018. "Re-Examining Embodied SO 2 and CO 2 Emissions in China," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    3. Wang, Yihan & Xiong, Siqin & Ma, Xiaoming, 2022. "Carbon inequality in global trade: Evidence from the mismatch between embodied carbon emissions and value added," Ecological Economics, Elsevier, vol. 195(C).
    4. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    5. Wan, Liyang & Wang, Can & Cai, Wenjia, 2016. "Impacts on water consumption of power sector in major emitting economies under INDC and longer term mitigation scenarios: An input-output based hybrid approach," Applied Energy, Elsevier, vol. 184(C), pages 26-39.
    6. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    7. Safi, Adnan & Haseeb, Muhammad & Islam, Madeeha & Umar, Muhammad, 2023. "Can sustainable resource management overcome geopolitical risk?," Resources Policy, Elsevier, vol. 87(PB).
    8. Ding, Qun & Cai, Wenjia & Wang, Can & Sanwal, Mukul, 2017. "The relationships between household consumption activities and energy consumption in china— An input-output analysis from the lifestyle perspective," Applied Energy, Elsevier, vol. 207(C), pages 520-532.
    9. Clara Lenk & Rosalie Arendt & Vanessa Bach & Matthias Finkbeiner, 2021. "Territorial-Based vs. Consumption-Based Carbon Footprint of an Urban District—A Case Study of Berlin-Wedding," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    10. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    11. Long, Yin & Yoshida, Yoshikuni, 2018. "Quantifying city-scale emission responsibility based on input-output analysis – Insight from Tokyo, Japan," Applied Energy, Elsevier, vol. 218(C), pages 349-360.
    12. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    13. Wang, Zhen & Yan, Haoben & Gao, Xue & Liang, Qiaomei & Mi, Zhifu & Liu, Lancui, 2024. "Have consumption-based CO2 emissions in developed countries peaked?," Energy Policy, Elsevier, vol. 184(C).
    14. Bokde, Neeraj Dhanraj & Tranberg, Bo & Andresen, Gorm Bruun, 2021. "Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling," Applied Energy, Elsevier, vol. 281(C).
    15. Sun, Xudong & Cheng, Xuelei & Guan, Chenghe & Wu, Xiaofang & Zhang, Bo, 2022. "Economic drivers of global and regional CH4 emission growth from the consumption perspective," Energy Policy, Elsevier, vol. 170(C).
    16. Yu Mishina & Yosuke Sasaki & Keizo Yokoyama, 2021. "Study on Worldwide Embodied Impacts of Construction: Analysis of WIOD Release 2016," Energies, MDPI, vol. 14(11), pages 1-16, May.
    17. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Guo, Lin & Zhang, Kun & Xue, Jinjun & Liang, Qiao-Mei, 2019. "Distributional impact of carbon pricing in Chinese provinces," Energy Economics, Elsevier, vol. 81(C), pages 327-340.
    18. James Karmoh Sowah & Sema Yilmaz Genc & Rui Alexandre Castanho & Gualter Couto & Mehmet Altuntas & Dervis Kirikkaleli, 2023. "The Asymmetric and Symmetric Effect of Energy Productivity on Environmental Quality in the Era of Industry 4.0: Empirical Evidence from Portugal," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    19. Jing-Li Fan & Qian Wang & Shiwei Yu & Yun-Bing Hou & Yi-Ming Wei, 2017. "The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1229-1248, December.
    20. Zhang, Zengkai & Lin, Jintai, 2018. "From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation," Applied Energy, Elsevier, vol. 211(C), pages 549-567.
    21. Choudhury, Tonmoy & Kayani, Umar Nawaz & Gul, Azeem & Haider, Syed Arslan & Ahmad, Sareer, 2023. "Carbon emissions, environmental distortions, and impact on growth," Energy Economics, Elsevier, vol. 126(C).
    22. Yang Yang & Suocheng Dong & Fujia Li & Hao Cheng & Zehong Li & Yu Li & Shantong Li, 2021. "An analysis on the adoption of an interregional carbon emission reduction allocation approach in the context of China’s interprovincial carbon emission transfer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4385-4411, March.
    23. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    24. Jing-Li Fan & Jian-Da Wang & Ling-Si Kong & Xian Zhang, 2018. "The carbon footprints of secondary industry in China: an input–output subsystem analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 635-657, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing-Li Fan & Qian Wang & Shiwei Yu & Yun-Bing Hou & Yi-Ming Wei, 2017. "The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1229-1248, December.
    2. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    3. Marco Sakai & Anne Owen & John Barrett, 2017. "The UK’s Emissions and Employment Footprints: Exploring the Trade-Offs," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    4. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    5. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    6. Xu, Xueliu & Wang, Qian & Ran, Chenyang & Mu, Mingjie, 2021. "Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions," Ecological Economics, Elsevier, vol. 181(C).
    7. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    8. Peng, Shuijun & Zhang, Wencheng & Sun, Chuanwang, 2016. "‘Environmental load displacement’ from the North to the South: A consumption-based perspective with a focus on China," Ecological Economics, Elsevier, vol. 128(C), pages 147-158.
    9. Sanmang Wu & Yalin Lei & Shantong Li, 2017. "Provincial carbon footprints and interprovincial transfer of embodied CO2 emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 537-558, January.
    10. Yan, Bingqian & Duan, Yuwan & Wang, Shouyang, 2020. "China’s emissions embodied in exports: How regional and trade heterogeneity matter," Energy Economics, Elsevier, vol. 87(C).
    11. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    12. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    13. Zhang, Bo & Yang, T.R. & Chen, B. & Sun, X.D., 2016. "China’s regional CH4 emissions: Characteristics, interregional transfer and mitigation policies," Applied Energy, Elsevier, vol. 184(C), pages 1184-1195.
    14. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    15. Chiara Bentivogli & Tommaso Ferraresi & Paola Monti & Renato Paniccià & Stefano Rosignoli, 2019. "Italian Regions in Global Value Chains: An Input-Output Approach," Politica economica, Società editrice il Mulino, issue 1, pages 55-94.
    16. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    17. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    18. Kenji Suganuma, 2016. "Upstreamness in the Global Value Chain: Manufacturing and Services," IMES Discussion Paper Series 16-E-02, Institute for Monetary and Economic Studies, Bank of Japan.
    19. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    20. Marcel P Timmer & Sébastien Miroudot & Gaaitzen J de Vries, 2019. "Functional specialisation in trade," Journal of Economic Geography, Oxford University Press, vol. 19(1), pages 1-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:790-799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.