IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v474y2024ics0096300324001565.html
   My bibliography  Save this article

Stability analysis and Hopf bifurcation for two-species reaction-diffusion-advection competition systems with two time delays

Author

Listed:
  • Alfifi, H.Y.

Abstract

This paper examines a class of two-species reaction-diffusion-advection competition models with two time delays. A system of DDE equations was derived, both theoretically and numerically, using the Galerkin technique method. A condition is defined that helps to find the existence of Hopf bifurcation points. Full diagrams of the Hopf bifurcation points and areas of stability are investigated in detail. Furthermore, we discuss three different sources of delay on bifurcation maps, and what impacts of all these cases of delays on others free rates on the regions of the Hopf bifurcation in this model. We find two different stability regions when the delay time is positive (τ>0), while the no-delay case (τ=0) has only one stable region. Moreover, the effect of delays and diffusion rates on all free others parameters in this model have been considered, which can significantly impact upon the stability regions in both population concentrations. It is also found that, as diffusion increases, the time delay increases. However, as the delay maturation is increased, the Hopf points for both proliferation of the population and advection rates are decreased and it causes raises to the region of instability. In addition, bifurcation diagrams are drawn to display chosen instances of the periodic oscillation and two dimensional phase portraits for both concentrations have been plotted to corroborate all analytical outputs that investigated in the theoretical part.

Suggested Citation

  • Alfifi, H.Y., 2024. "Stability analysis and Hopf bifurcation for two-species reaction-diffusion-advection competition systems with two time delays," Applied Mathematics and Computation, Elsevier, vol. 474(C).
  • Handle: RePEc:eee:apmaco:v:474:y:2024:i:c:s0096300324001565
    DOI: 10.1016/j.amc.2024.128684
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324001565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:474:y:2024:i:c:s0096300324001565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.