IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v297y2024ics0378377424001525.html
   My bibliography  Save this article

Grain yield, water-land productivity and economic profit responses to row configuration in maize-soybean strip intercropping systems under drip fertigation in arid northwest China

Author

Listed:
  • Kou, Hongtai
  • Liao, Zhenqi
  • Zhang, Hui
  • Lai, Zhenlin
  • Liu, Yiyao
  • Kong, Hao
  • Li, Zhijun
  • Zhang, Fucang
  • Fan, Junliang

Abstract

Intercropping has great potential for alleviating arable land competition, improving land output and promoting sustainable agricultural development. However, the applicability of maize-soybean strip intercropping under drip fertigation in arid northwest China remains unclear, especially under various row configurations. A two-season (2022 and 2023) field experiment was performed in the Hexi Region of northwest China to investigate the responses of plant growth, yield performance, water-land productivity and economic profit of drip-fertigated maize-soybean strip intercropping systems to eight row configurations. The results showed that intercropping significantly reduced aboveground biomass accumulation of maize and soybean by 18.77% and 47.81% on average compared to monocropping, respectively. Intercropping significantly decreased the 100-grain weight, ear length and ear width of maize, and reduced the 100-grain weight and pod number of soybean, resulting in reduced grain yields of intercropped maize and soybean (by 13.08% and 48.73%, respectively), but two rows of maize alternating with four rows of soybean (M2S4), three rows of maize alternating with four rows of soybean (M3S4), four rows of maize in wide and narrow rows alternating with four rows of soybean (M4S4-MN), and four rows of maize in wide and narrow rows alternating with six rows of soybean (M4S6-MN) produced greater population grain yield compared to monocropping. Among all intercropping systems, the largest water-land productivity and economic profit occurred in M2S4 (1.61 in 2022 and 1.42 in 2023 for land equivalent ratio; 29.23 kg ha−1 mm−1 in 2022 and 28.22 kg ha−1 mm−1 in 2023 for water productivity; 23,965 CNY ha−1 in 2022 and 23,059 CNY ha−1 in 2023 for economic profit), followed by M4S4-MN (1.53 in 2022 and 1.36 in 2023 for land equivalent ratio; 27.11 kg ha−1 mm−1 in 2022 and 26.58 kg ha−1 mm−1 in 2023 for water productivity; 22,327 CNY ha−1 in 2022 and 22,224 CNY ha−1 in 2023 for economic profit). The M2S4 is thus the optimal row configuration for drip-fertigated maize-soybean strip intercropping systems in terms of grain yield, economic profit and land productivity, while the M4S4-MN is recommended by further considering the efficiency of mechanized sowing and harvesting.

Suggested Citation

  • Kou, Hongtai & Liao, Zhenqi & Zhang, Hui & Lai, Zhenlin & Liu, Yiyao & Kong, Hao & Li, Zhijun & Zhang, Fucang & Fan, Junliang, 2024. "Grain yield, water-land productivity and economic profit responses to row configuration in maize-soybean strip intercropping systems under drip fertigation in arid northwest China," Agricultural Water Management, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001525
    DOI: 10.1016/j.agwat.2024.108817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.