IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v296y2024ics037837742400146x.html
   My bibliography  Save this article

Biological factor controls the variations in water use efficiency of an alpine meadow during the growing season in a permafrost region of the Qinghai-Tibet Plateau

Author

Listed:
  • Hu, Zhaoyong
  • Wang, Genxu
  • Sun, Xiangyang
  • Huang, Kewei
  • Song, Chunlin
  • Li, Yang
  • Sun, Shouqin
  • Sun, Juying
  • Lin, Shan

Abstract

The alpine meadow located in permafrost is crucial for ecosystem services of the Qinghai-Tibet Plateau (QTP), which is experiencing precipitation changes in most areas. Water use efficiency (WUE) can quantify the inextricable link between carbon assimilation and water loss in terrestrial ecosystems. However, the temporal variations in WUE and its driving factors across different precipitation years still need to be clarified in alpine meadows on the QTP. Therefore, 4-year carbon and water flux data were used to elucidate the mechanisms behind seasonal and interannual variations in WUE of an alpine meadow in the hinterland of the QTP. Noticeable seasonal variations in WUE were observed during the studied period, with the highest value (1.38±0.38 g C kg−1 H2O) occurring during the mid-growing season (MG, starting around 166 DOY), approximately 2 and 3 times those during the late-growing season (LG, starting around 256 DOY and ending around 282 DOY) and early-growing season (EG, starting around 140 DOY), respectively. Standardized total effects in the structural equation models from NDVI to WUE were highest in all seasons, indicating that NDVI was the primary controlling factor for daily WUE variations. Additionally, energy factors (temperature and solar radiation) also significantly influenced daily WUE variations. The highest mean daily WUE (1.23±0.65 g C kg−1 H2O) was in the mild dry year (2016). However, no significant differences were noted in mean daily WUE in severe dry (2015) and wet (2019) years compared to the normal year (2020) during GS. This can be attributed to the varying sensitivity of carbon assimilation and water loss to biotic and abiotic changes across divergent precipitation years, with WUE exhibiting a greater sensitive to gross primary productivity than to evapotranspiration. These findings suggest that alpine meadows have endured in its harsh environment and have adapted to climatic fluctuations through long-term evolution.

Suggested Citation

  • Hu, Zhaoyong & Wang, Genxu & Sun, Xiangyang & Huang, Kewei & Song, Chunlin & Li, Yang & Sun, Shouqin & Sun, Juying & Lin, Shan, 2024. "Biological factor controls the variations in water use efficiency of an alpine meadow during the growing season in a permafrost region of the Qinghai-Tibet Plateau," Agricultural Water Management, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s037837742400146x
    DOI: 10.1016/j.agwat.2024.108811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742400146X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s037837742400146x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.