IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v296y2024ics0378377424001422.html
   My bibliography  Save this article

A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain

Author

Listed:
  • Zhou, Hanmi
  • Ma, Linshuang
  • Niu, Xiaoli
  • Xiang, Youzhen
  • Chen, Jiageng
  • Su, Yumin
  • Li, Jichen
  • Lu, Sibo
  • Chen, Cheng
  • Wu, Qi

Abstract

The reference evapotranspiration (ETo) is a key parameter in achieving sustainable use of agricultural water resources. To accurately acquire ETo under limited conditions, this study combined the northern goshawk optimization algorithm (NGO) with the extreme gradient boosting (XGBoost) model to propose a novel NGO-XGBoost model. The performance of this model was evaluated using meteorological data from 30 stations in the North China Plain and compared with XGBoost, random forest (RF), and k nearest neighbor (KNN) models. An ensemble embedded feature selection (EEFS) method combined with the results from RF, XGBoost, adaptive boosting (AdaBoost), and categorical boosting (CatBoost) models is used to obtain the importance of meteorological factors in estimating ETo, and thereby determine the optimal combination of inputs to the model. The results indicated that by using the top 3, 4, and 5 important factors as input combinations, all models achieved high ETo estimation accuracy. It is worth noting that there were significant spatial differences in the estimation precisions of the four models, but the NGO-XGBoost model exhibited consistently high estimation precisions, with global performance indicator (GPI) rankings of 1st, and the range of coefficient of determination (R2), nash efficiency coefficient (NSE), root mean square error (RMSE), mean absolute error (MAE) and mean bias error (MBE) were 0.920–0.998, 0.902–0.998, 0.078–0.623 mm d−1, 0.058–0.430 mm d−1, and −0.254–0.062 mm d−1, respectively. Furthermore, the accuracy of the NGO-XGBoost model in estimating ETo varied across different seasons, which was more significantly affected by humidity and wind speed in winter. When the target station data was insufficient, the NGO-XGBoost model was trained by using the historical data from neighboring stations and still maintained a high precision. Overall, this study recommends a reliable method for estimating ETo, which provides a reference for accurately calculating ETo in the North China Plain in the absence of meteorological data.

Suggested Citation

  • Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s0378377424001422
    DOI: 10.1016/j.agwat.2024.108807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s0378377424001422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.