IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v296y2024ics0378377424001410.html
   My bibliography  Save this article

The impact of global cropland irrigation on soil carbon dynamics

Author

Listed:
  • Yao, Xiaochen
  • Zhang, Zhiyu
  • Yuan, Fenghui
  • Song, Changchun

Abstract

Irrigation can increase crop yields and could be a key climate adaptation strategy. At present, under the background of increasing food demand and continuous expansion of irrigation cropland, there still uncertainties about the soil carbon dynamics under the change of irrigation water volume and irrigated area in view of large-scale spatial heterogeneity. Therefore, this paper uses space-for-time + meta-analysis and a two-step methodology based on the residual trend analysis to quantitatively analyze the relationship between soil organic carbon (SOC) and soil respiration (Rs) in response to fluctuations in irrigation water volume and irrigated land extents. Here we show that the irrigation water volume within 100–1000 mm had a negative impact on SOC, and the impact was correlated with the irrigation water volume. Different levels of irrigation water manifest distinct effects on SOC content across varying soil depths. When irrigation water quantities are less than 700 mm, the impact on SOC content in the 0–30 cm depth layer surpasses that in the 30–200 cm depth layer. Conversely, when irrigation water quantities equal or exceed 700 mm, this pattern is reversed. The overall impact of irrigation on SOC stock at a depth of 0–200 cm was −14.88±6.7%. Tillage, planting intensity, topography, and soil type within irrigated cropland all exert variable impacts on SOC content. Whether these influences are deleterious or beneficial hinges predominantly upon the balance between the augmentation of SOC stock due to heightened carbon inputs from crops and the reduction of SOC through alterations in microbial activity. Mann-Kendall trend analysis showed that from 2000 to 2015, the overall Rs of cropland showed an increasing trend, with an increase rate of 3.67 g/m2/year. The increase of global Rs is mainly driven by climate change factors (temperature, precipitation and solar radiation), while the decrease of Rs in a small number of areas is mainly driven by management practices (fertilizer nitrogen, irrigation, and tillage). Our study further quantifies the impact of irrigation on soil carbon dynamics, thereby offering potential pathways and data support for the advancement of sustainable agriculture.

Suggested Citation

  • Yao, Xiaochen & Zhang, Zhiyu & Yuan, Fenghui & Song, Changchun, 2024. "The impact of global cropland irrigation on soil carbon dynamics," Agricultural Water Management, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s0378377424001410
    DOI: 10.1016/j.agwat.2024.108806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:296:y:2024:i:c:s0378377424001410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.