IDEAS home Printed from https://ideas.repec.org/a/cup/netsci/v8y2020is1ps110-s144_7.html
   My bibliography  Save this article

Modeling higher order adaptivity of a network by multilevel network reification

Author

Listed:
  • Treur, Jan

Abstract

In network models for real-world domains, often network adaptation has to be addressed by incorporating certain network adaptation principles. In some cases, also higher order adaptation occurs: the adaptation principles themselves also change over time. To model such multilevel adaptation processes, it is useful to have some generic architecture. Such an architecture should describe and distinguish the dynamics within the network (base level), but also the dynamics of the network itself by certain adaptation principles (first-order adaptation level), and also the adaptation of these adaptation principles (second-order adaptation level), and may be still more levels of higher order adaptation. This paper introduces a multilevel network architecture for this, based on the notion network reification. Reification of a network occurs when a base network is extended by adding explicit states representing the characteristics of the structure of the base network. It will be shown how this construction can be used to explicitly represent network adaptation principles within a network. When the reified network is itself also reified, also second-order adaptation principles can be explicitly represented. The multilevel network reification construction introduced here is illustrated for an adaptive adaptation principle from social science for bonding based on homophily and one for metaplasticity in Cognitive Neuroscience.

Suggested Citation

  • Treur, Jan, 2020. "Modeling higher order adaptivity of a network by multilevel network reification," Network Science, Cambridge University Press, vol. 8(S1), pages 110-144, July.
  • Handle: RePEc:cup:netsci:v:8:y:2020:i:s1:p:s110-s144_7
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S2050124219000560/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:netsci:v:8:y:2020:i:s1:p:s110-s144_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/nws .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.