IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v20y2021i1p17-36n2.html
   My bibliography  Save this article

Fine tuned exploration of evolutionary relationships within the protein universe

Author

Listed:
  • Gullotto Danilo

    (Advanced Computational Biostructural Research Collaboratory, I-95019, Zafferana Etnea, Italy)

Abstract

In the regime of domain classifications, the protein universe unveils a discrete set of folds connected by hierarchical relationships. Instead, at sub-domain-size resolution and because of physical constraints not necessarily requiring evolution to shape polypeptide chains, networks of protein motifs depict a continuous view that lies beyond the extent of hierarchical classification schemes. A number of studies, however, suggest that universal sub-sequences could be the descendants of peptides emerged in an ancient pre-biotic world. Should this be the case, evolutionary signals retained by structurally conserved motifs, along with hierarchical features of ancient domains, could sew relationships among folds that diverged beyond the point where homology is discernable. In view of the aforementioned, this paper provides a rationale where a network with hierarchical and continuous levels of the protein space, together with sequence profiles that probe the extent of sequence similarity and contacting residues that capture the transition from pre-biotic to domain world, has been used to explore relationships between ancient folds. Statistics of detected signals have been reported. As a result, an example of an emergent sub-network that makes sense from an evolutionary perspective, where conserved signals retrieved from the assessed protein space have been co-opted, has been discussed.

Suggested Citation

  • Gullotto Danilo, 2021. "Fine tuned exploration of evolutionary relationships within the protein universe," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 20(1), pages 17-36, February.
  • Handle: RePEc:bpj:sagmbi:v:20:y:2021:i:1:p:17-36:n:2
    DOI: 10.1515/sagmb-2019-0039
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2019-0039
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2019-0039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alberto Pascual-García & David Abia & Ángel R Ortiz & Ugo Bastolla, 2009. "Cross-Over between Discrete and Continuous Protein Structure Space: Insights into Automatic Classification and Networks of Protein Structures," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James O Wrabl & Vincent J Hilser, 2010. "Investigating Homology between Proteins using Energetic Profiles," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:20:y:2021:i:1:p:17-36:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.