IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v23y2017i3p189-212n4.html
   My bibliography  Save this article

Random walk on spheres algorithm for solving transient drift-diffusion-reaction problems

Author

Listed:
  • Sabelfeld Karl K.

    (Institute of Computational Mathematics and Mathematical Geophysics, Russian Academy of Sciences, Novosibirsk, Russia)

Abstract

We suggest in this paper a Random Walk on Spheres (RWS) method for solving transient drift-diffusion-reaction problems which is an extension of our algorithm we developed recently [26] for solving steady-state drift-diffusion problems. Both two-dimensional and three-dimensional problems are solved. Survival probability, first passage time and the exit position for a sphere (disc) of the drift-diffusion-reaction process are explicitly derived from a generalized spherical integral relation we prove both for two-dimensional and three-dimensional problems. The distribution of the exit position on the sphere has the form of the von Mises–Fisher distribution which can be simulated efficiently. Rigorous expressions are derived in the case of constant velocity drift, but the algorithm is then extended to solve drift-diffusion-reaction problems with arbitrary varying drift velocity vector. The method can efficiently be applied to calculate the fluxes of the solution to any part of the boundary. This can be done by applying a reciprocity theorem which we prove here for the drift-diffusion-reaction problems with general boundary conditions. Applications of this approach to methods of cathodoluminescence (CL) and electron beam induced current (EBIC) imaging of defects and dislocations in semiconductors are presented.

Suggested Citation

  • Sabelfeld Karl K., 2017. "Random walk on spheres algorithm for solving transient drift-diffusion-reaction problems," Monte Carlo Methods and Applications, De Gruyter, vol. 23(3), pages 189-212, September.
  • Handle: RePEc:bpj:mcmeap:v:23:y:2017:i:3:p:189-212:n:4
    DOI: 10.1515/mcma-2017-0113
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2017-0113
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2017-0113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Devroye, Luc, 2002. "Simulating Bessel random variables," Statistics & Probability Letters, Elsevier, vol. 57(3), pages 249-257, April.
    2. D. J. Best & N. I. Fisher, 1979. "Efficient Simulation of the von Mises Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 152-157, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Pellegrino & P. Sabino, 2015. "Enhancing Least Squares Monte Carlo with diffusion bridges: an application to energy facilities," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 761-772, May.
    2. Roberto León-González, 2019. "Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
    3. Cao, Meng & Sharma, Mukul M., 2023. "Effect of fracture geometry, topology and connectivity on energy recovery from enhanced geothermal systems," Energy, Elsevier, vol. 282(C).
    4. Makarov Roman N. & Glew Devin, 2010. "Exact simulation of Bessel diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 16(3-4), pages 283-306, January.
    5. Kanti Mardia, 2010. "Bayesian analysis for bivariate von Mises distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 515-528.
    6. Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
    7. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.
    8. Devroye, Luc, 2002. "Simulating Bessel random variables," Statistics & Probability Letters, Elsevier, vol. 57(3), pages 249-257, April.
    9. Akihiro Tanabe & Kenji Fukumizu & Shigeyuki Oba & Takashi Takenouchi & Shin Ishii, 2007. "Parameter estimation for von Mises–Fisher distributions," Computational Statistics, Springer, vol. 22(1), pages 145-157, April.
    10. Wenbin Hu & Junzi Zhou, 2017. "Backward simulation methods for pricing American options under the CIR process," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1683-1695, November.
    11. Hendriks, Harrie & Landsman, Zinoviy, 1998. "Mean Location and Sample Mean Location on Manifolds: Asymptotics, Tests, Confidence Regions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 227-243, November.
    12. Toru Kitagawa & Jeff Rowley, 2022. "von Mises-Fisher distributions and their statistical divergence," Papers 2202.05192, arXiv.org, revised Nov 2022.
    13. Fotopoulos, Stergios B. & Jandhyala, Venkata K., 2004. "Bessel inequalities with applications to conditional log returns under GIG scale mixtures of normal vectors," Statistics & Probability Letters, Elsevier, vol. 66(2), pages 117-125, January.
    14. Hegemann, Rachel A. & Smith, Laura M. & Barbaro, Alethea B.T. & Bertozzi, Andrea L. & Reid, Shannon E. & Tita, George E., 2011. "Geographical influences of an emerging network of gang rivalries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3894-3914.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:23:y:2017:i:3:p:189-212:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.