IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v17y2021i2p107-115n1.html
   My bibliography  Save this article

Algorithmically deconstructing shot locations as a method for shot quality in hockey

Author

Listed:
  • Becker Devan G.
  • Woolford Douglas G.

    (The University of Western Ontario, London, Canada)

  • Dean Charmaine B.

    (The University of Waterloo, Waterloo, Canada)

Abstract

Spatial point processes have been successfully used to model the relative efficiency of shot locations for each player in professional basketball games. Those analyses were possible because each player makes enough baskets to reliably fit a point process model. Goals in hockey are rare enough that a point process cannot be fit to each player’s goal locations, so novel techniques are needed to obtain measures of shot efficiency for each player. A Log-Gaussian Cox Process (LGCP) is used to model all shot locations, including goals, of each NHL player who took at least 500 shots during the 2011–2018 seasons. Each player’s LGCP surface is treated as an image and these images are then used in an unsupervised statistical learning algorithm that decomposes the pictures into a linear combination of spatial basis functions. The coefficients of these basis functions are shown to be a very useful tool to compare players. To incorporate goals, the locations of all shots that resulted in a goal are treated as a “perfect player” and used in the same algorithm (goals are further split into perfect forwards, perfect centres and perfect defence). These perfect players are compared to other players as a measure of shot efficiency. This analysis provides a map of common shooting locations, identifies regions with the most goals relative to the number of shots and demonstrates how each player’s shot location differs from scoring locations.

Suggested Citation

  • Becker Devan G. & Woolford Douglas G. & Dean Charmaine B., 2021. "Algorithmically deconstructing shot locations as a method for shot quality in hockey," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 107-115, June.
  • Handle: RePEc:bpj:jqsprt:v:17:y:2021:i:2:p:107-115:n:1
    DOI: 10.1515/jqas-2020-0012
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2020-0012
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2020-0012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    2. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    3. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    5. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    6. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    7. Carson, Stuart & Mills Flemming, Joanna, 2014. "Seal encounters at sea: A contemporary spatial approach using R-INLA," Ecological Modelling, Elsevier, vol. 291(C), pages 175-181.
    8. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    9. Ali Arab, 2015. "Spatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros," IJERPH, MDPI, vol. 12(9), pages 1-13, August.
    10. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    11. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    12. Jamie M. Madden & Simon More & Conor Teljeur & Justin Gleeson & Cathal Walsh & Guy McGrath, 2021. "Population Mobility Trends, Deprivation Index and the Spatio-Temporal Spread of Coronavirus Disease 2019 in Ireland," IJERPH, MDPI, vol. 18(12), pages 1-16, June.
    13. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    14. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    15. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    16. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    17. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    18. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    19. Coll, M. & Pennino, M. Grazia & Steenbeek, J. & Sole, J. & Bellido, J.M., 2019. "Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches," Ecological Modelling, Elsevier, vol. 405(C), pages 86-101.
    20. Laura Serra & Claudio Detotto & Marco Vannini, 2022. "Public lands as a mitigator of wildfire burned area using a spatio-temporal model applied in Sardinia," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 621-635, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:17:y:2021:i:2:p:107-115:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.