IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v11y2015i2p85-96n2.html
   My bibliography  Save this article

Multi-day bicycle tour route generation

Author

Listed:
  • Payne Katherine Carl

    (Brigham Young University – Information Systems, Provo, UT, USA)

  • Dror Moshe

    (University of Arizona – Management Information Systems, Tucson, AZ, USA)

Abstract

In this paper, we describe a procedure for constructing bicycle routes of minimal perceived exertion over a multi-day tour for cyclists of different levels of expertise. Given a cyclist’s origin, destination, selected points of interest she/he wants to visit, and a level of cycling expertise, this procedure generates a multi-day bicycle tour as a collection of successive daily paths that begin and end at overnight accommodations. The objective is to minimize the total perceived exertion. We demonstrate the implementation of this procedure on an example multi-day tour route in California and present the results of a survey designed to evaluate the daily paths constructed. Repeated measures analysis indicated that 108 of the 120 perceived exertion ratings of the routes generated by our method fit the reported perceived exertion levels of 175 avid cyclists who participated in an evaluation survey.

Suggested Citation

  • Payne Katherine Carl & Dror Moshe, 2015. "Multi-day bicycle tour route generation," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(2), pages 85-96, June.
  • Handle: RePEc:bpj:jqsprt:v:11:y:2015:i:2:p:85-96:n:2
    DOI: 10.1515/jqas-2014-0071
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2014-0071
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2014-0071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Jason G. & Winters, Meghan & Nunes, Melissa & Brauer, Michael, 2010. "Designing a route planner to facilitate and promote cycling in Metro Vancouver, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 495-505, August.
    2. Pucher, J. & Buehler, R. & Merom, D. & Bauman, A., 2011. "Walking and cycling in the United States, 2001-2009: Evidence from the National Household Travel Surveys," American Journal of Public Health, American Public Health Association, vol. 101(SUPPL. 1), pages 310-317.
    3. Laporte, Gilbert, 1992. "The vehicle routing problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(3), pages 345-358, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Yingnan & Fu, Hua, 2019. "Association between innovative dockless bicycle sharing programs and adopting cycling in commuting and non-commuting trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 12-21.
    2. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    3. Du, Jianhui & Zhang, Zhiqin & Wang, Xu & Lau, Hoong Chuin, 2023. "A hierarchical optimization approach for dynamic pickup and delivery problem with LIFO constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    4. Hughes, Michael S. & Lunday, Brian J. & Weir, Jeffrey D. & Hopkinson, Kenneth M., 2021. "The multiple shortest path problem with path deconfliction," European Journal of Operational Research, Elsevier, vol. 292(3), pages 818-829.
    5. Sepehr Nemati & Oleg V. Shylo & Oleg A. Prokopyev & Andrew J. Schaefer, 2016. "The Surgical Patient Routing Problem: A Central Planner Approach," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 657-673, November.
    6. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    7. Bahrami, Sina & Nourinejad, Mehdi & Yin, Yafeng & Wang, Hai, 2023. "The three-sided market of on-demand delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    8. Kębłowski, Wojciech & Dobruszkes, Frédéric & Boussauw, Kobe, 2022. "Moving past sustainable transport studies: Towards a critical perspective on urban transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 74-83.
    9. Özlü, Oğuzhan & Sokol, Joel, 2016. "An optimization approach to designing a baseball scout network," European Journal of Operational Research, Elsevier, vol. 255(3), pages 948-960.
    10. Sean Grogan & Robert Pellerin & Michel Gamache, 2021. "Using tornado-related weather data to route unmanned aerial vehicles to locate damage and victims," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 905-939, December.
    11. Chardy, Matthieu & Klopfenstein, Olivier, 2012. "Handling uncertainties in vehicle routing problems through data preprocessing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 667-683.
    12. Andrew J. Collins & Craig A. Jordan & R. Michael Robinson & Caitlin Cornelius & Ross Gore, 2020. "Exploring good cycling cities using multivariate statistics," Environment Systems and Decisions, Springer, vol. 40(4), pages 526-543, December.
    13. Karima Kourtit & Peter Nijkamp & Mark D. Partridge & Marlon G. Boarnet, 2013. "The declining role of the automobile and the re-emergence of place in urban transportation: The past will be prologue," Regional Science Policy & Practice, Wiley Blackwell, vol. 5(2), pages 237-253, June.
    14. Bongiorno, Christian & Santucci, Daniele & Kon, Fabio & Santi, Paolo & Ratti, Carlo, 2019. "Comparing bicycling and pedestrian mobility: Patterns of non-motorized human mobility in Greater Boston," Journal of Transport Geography, Elsevier, vol. 80(C).
    15. Rajeev Kumar, 2022. "A Gig Worker-Centric Approach for Efficient Picking and Delivery of Electric Scooters," International Journal of Business Analytics (IJBAN), IGI Global, vol. 9(1), pages 1-14, January.
    16. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    17. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.
    18. Amini-Behbahani, Peiman & Meng, Li & Gu, Ning, 2020. "Walking distances from services and destinations for residential aged-care centres in Australian cities," Journal of Transport Geography, Elsevier, vol. 85(C).
    19. Lu, Wei & Scott, Darren M. & Dalumpines, Ron, 2018. "Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths," Journal of Transport Geography, Elsevier, vol. 71(C), pages 172-181.
    20. Mina, Hokey & Jayaraman, Vaidyanathan & Srivastava, Rajesh, 1998. "Combined location-routing problems: A synthesis and future research directions," European Journal of Operational Research, Elsevier, vol. 108(1), pages 1-15, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:11:y:2015:i:2:p:85-96:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.