IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v7y2018i4ne296.html
   My bibliography  Save this article

Towards a fully integrated North Sea offshore grid: An engineering‐economic assessment of a power link island

Author

Listed:
  • Martin Kristiansen
  • Magnus Korpås
  • Hossein Farahmand

Abstract

An increasing share of variable power feed‐in is expected in the next decades in the European power system, with a particularly high offshore wind potential in the North Sea region. This demands more temporal‐ and spatial flexibility in the system, an adequate grid infrastructure can provide both. This study presents an engineering‐economic approach evaluating the impact of novel infrastructure designs towards a fully integrated North Sea offshore grid, including TenneT’s vision of a power link island (PLI). A PLI is an artificial island for transnational power exchange and distribution of offshore wind resources. We introduce the concept and evaluate the economic benefits and system implications under three different case studies incorporating 2030 scenarios from European Network of Transmission System Operators. The results demonstrate system cost savings up to 15.8% when comparing a fully integrated PLI solution with traditional, radial typologies. The PLI did in general result in more efficient system dispatch of wind resources, where the involvement from Norway, Great Britain, and Germany occurred most frequently in terms of grid reinforcements and expansions. This article is categorized under: Wind Power > Systems and Infrastructure Energy Infrastructure > Systems and Infrastructure Energy Systems Economics > Systems and Infrastructure

Suggested Citation

  • Martin Kristiansen & Magnus Korpås & Hossein Farahmand, 2018. "Towards a fully integrated North Sea offshore grid: An engineering‐economic assessment of a power link island," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
  • Handle: RePEc:bla:wireae:v:7:y:2018:i:4:n:e296
    DOI: 10.1002/wene.296
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.296
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    2. Kristiansen, Martin & Korpås, Magnus & Svendsen, Harald G., 2018. "A generic framework for power system flexibility analysis using cooperative game theory," Applied Energy, Elsevier, vol. 212(C), pages 223-232.
    3. Egerer, Jonas & Kunz, Friedrich & Hirschhausen, Christian von, 2013. "Development scenarios for the North and Baltic Seas Grid – A welfare economic analysis," Utilities Policy, Elsevier, vol. 27(C), pages 123-134.
    4. Gorenstein Dedecca, João & Hakvoort, Rudi A. & Herder, Paulien M., 2017. "Transmission expansion simulation for the European Northern Seas offshore grid," Energy, Elsevier, vol. 125(C), pages 805-824.
    5. Konstantelos, Ioannis & Pudjianto, Danny & Strbac, Goran & De Decker, Jan & Joseph, Pieter & Flament, Aurore & Kreutzkamp, Paul & Genoese, Fabio & Rehfeldt, Leif & Wallasch, Anna-Kathrin & Gerdes, Ger, 2017. "Integrated North Sea grids: The costs, the benefits and their distribution between countries," Energy Policy, Elsevier, vol. 101(C), pages 28-41.
    6. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    7. Alayo, Hans & Rider, Marcos J. & Contreras, Javier, 2017. "Economic externalities in transmission network expansion planning," Energy Economics, Elsevier, vol. 68(C), pages 109-115.
    8. Daniel Huertas‐Hernando & Hossein Farahmand & Hannele Holttinen & Juha Kiviluoma & Erkka Rinne & Lennart Söder & Michael Milligan & Eduardo Ibanez & Sergio Martín Martínez & Emilio Gomez‐Lazaro & Ana , 2017. "Hydro power flexibility for power systems with variable renewable energy sources: an IEA Task 25 collaboration," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(1), January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2024. "Electrolysis as a flexibility resource on energy islands: The case of the North Sea," Energy Policy, Elsevier, vol. 185(C).
    2. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland, 2023. "Offshore wind power market values in the North Sea – A probabilistic approach," Energy, Elsevier, vol. 267(C).
    3. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristiansen, Martin & Korpås, Magnus & Svendsen, Harald G., 2018. "A generic framework for power system flexibility analysis using cooperative game theory," Applied Energy, Elsevier, vol. 212(C), pages 223-232.
    2. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2019. "Multi-temporal assessment of power system flexibility requirement," Applied Energy, Elsevier, vol. 238(C), pages 1327-1336.
    3. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    4. Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
    5. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    6. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    8. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    9. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    10. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    11. Sunila, Kanerva & Bergaentzlé, Claire & Martin, Bénédicte & Ekroos, Ari, 2019. "A supra-national TSO to enhance offshore wind power development in the Baltic Sea? A legal and regulatory analysis," Energy Policy, Elsevier, vol. 128(C), pages 775-782.
    12. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Panapakidis, Ioannis P., 2017. "Impact of the penetration of renewables on flexibility needs," Energy Policy, Elsevier, vol. 109(C), pages 360-369.
    13. O'Shaughnessy, Eric & Heeter, Jenny & Shah, Chandra & Koebrich, Sam, 2021. "Corporate acceleration of the renewable energy transition and implications for electric grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    15. Gea-Bermúdez, Juan & Pade, Lise-Lotte & Koivisto, Matti Juhani & Ravn, Hans, 2020. "Optimal generation and transmission development of the North Sea region: Impact of grid architecture and planning horizon," Energy, Elsevier, vol. 191(C).
    16. Ländner, Eva-Maria & Märtz, Alexandra & Schöpf, Michael & Weibelzahl, Martin, 2019. "From energy legislation to investment determination: Shaping future electricity markets with different flexibility options," Energy Policy, Elsevier, vol. 129(C), pages 1100-1110.
    17. Lüth, Alexandra & Seifert, Paul E. & Egging-Bratseth, Ruud & Weibezahn, Jens, 2023. "How to connect energy islands: Trade-offs between hydrogen and electricity infrastructure," Applied Energy, Elsevier, vol. 341(C).
    18. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2019. "Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney," Energy, Elsevier, vol. 175(C), pages 505-514.
    19. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    20. Diestelmeier, Lea, 2019. "Changing power: Shifting the role of electricity consumers with blockchain technology – Policy implications for EU electricity law," Energy Policy, Elsevier, vol. 128(C), pages 189-196.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:7:y:2018:i:4:n:e296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.