IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v12y2023i2ne461.html
   My bibliography  Save this article

Recent advancement in rechargeable battery technologies

Author

Listed:
  • Saswati Sarmah
  • Lakhanlal
  • Biraj Kumar Kakati
  • Dhanapati Deka

Abstract

The ongoing energy issues worldwide have led to the continuous growth of the electrochemical energy storage system in recent years, and the battery is a vital part of it. The battery market, mainly rechargeable batteries, is expanding rapidly to cater to the demands of the changing society, along with the utilization of batteries in electric vehicles, the renewable energy sector, and the industrial sector. From the matured technology like the lead–acid battery to the most advanced Li‐ion (Li‐ion) battery, rechargeable battery technology has developed significantly. In comparison to the conventional lead–acid battery, other rechargeable battery technologies such as Li‐ion, nickel–metal hydride (NiMH), and nickel–cadmium (Ni–Cd) batteries are considered as more promising electrochemical energy storage systems. The Li‐ion battery, which has been on the market since 1991, is the most popular rechargeable battery due to its high energy density and good durability. With the growing market demand of battery with superior electrochemical performance in terms of specific energy, cyclability, stability, and better safety, next generation Li‐ion batteries are being widely explored in the recent time. This review discusses various rechargeable batteries which are in trend and the issues and challenges associated with it. The advancements that have taken place primarily in the electrode (both cathode and anode) materials, along with electrolytes, for improving the battery performance from the year 2000 onwards are discussed. Moreover, discussion on next‐generation batteries is also covered in this review. This article is categorized under: Emerging Technologies > Energy Storage

Suggested Citation

  • Saswati Sarmah & Lakhanlal & Biraj Kumar Kakati & Dhanapati Deka, 2023. "Recent advancement in rechargeable battery technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
  • Handle: RePEc:bla:wireae:v:12:y:2023:i:2:n:e461
    DOI: 10.1002/wene.461
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.461
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinyong Tao & Jianguo Wang & Chong Liu & Haotian Wang & Hongbin Yao & Guangyuan Zheng & Zhi Wei Seh & Qiuxia Cai & Weiyang Li & Guangmin Zhou & Chenxi Zu & Yi Cui, 2016. "Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    2. Byoungwoo Kang & Gerbrand Ceder, 2009. "Battery materials for ultrafast charging and discharging," Nature, Nature, vol. 458(7235), pages 190-193, March.
    3. Hammond, Geoffrey P. & Hazeldine, Tom, 2015. "Indicative energy technology assessment of advanced rechargeable batteries," Applied Energy, Elsevier, vol. 138(C), pages 559-571.
    4. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    5. Baker, John, 2008. "New technology and possible advances in energy storage," Energy Policy, Elsevier, vol. 36(12), pages 4368-4373, December.
    6. Meng-Chang Lin & Ming Gong & Bingan Lu & Yingpeng Wu & Di-Yan Wang & Mingyun Guan & Michael Angell & Changxin Chen & Jiang Yang & Bing-Joe Hwang & Hongjie Dai, 2015. "An ultrafast rechargeable aluminium-ion battery," Nature, Nature, vol. 520(7547), pages 324-328, April.
    7. Yang Wen & Kai He & Yujie Zhu & Fudong Han & Yunhua Xu & Isamu Matsuda & Yoshitaka Ishii & John Cumings & Chunsheng Wang, 2014. "Expanded graphite as superior anode for sodium-ion batteries," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fulton, Lewis & Gruen, Jonathan, 2024. "Zero-Emission Trucks: Benefits Analysis and Policy Synergy Recommendations," Institute of Transportation Studies, Working Paper Series qt2gh6x0x1, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    2. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    4. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    5. Ayotunde A. Adeyemo & Elisabetta Tedeschi, 2023. "Technology Suitability Assessment of Battery Energy Storage System for High-Energy Applications on Offshore Oil and Gas Platforms," Energies, MDPI, vol. 16(18), pages 1-38, September.
    6. Trocino, Stefano & Lo Faro, Massimiliano & Zignani, Sabrina Campagna & Antonucci, Vincenzo & Aricò, Antonino Salvatore, 2019. "High performance solid-state iron-air rechargeable ceramic battery operating at intermediate temperatures (500–650 °C)," Applied Energy, Elsevier, vol. 233, pages 386-394.
    7. Heidenthaler, Daniel & Leeb, Markus & Schnabel, Thomas & Huber, Hermann, 2021. "Comparative analysis of thermally activated building systems in wooden and concrete structures regarding functionality and energy storage on a simulation-based approach," Energy, Elsevier, vol. 233(C).
    8. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.
    9. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    10. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    11. Gaurav Chaudhary & Jacob J. Lamb & Odne S. Burheim & Bjørn Austbø, 2021. "Review of Energy Storage and Energy Management System Control Strategies in Microgrids," Energies, MDPI, vol. 14(16), pages 1-26, August.
    12. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    13. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    14. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    15. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    16. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    17. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    18. Hossein Lotfi & Mohammad Hasan Nikkhah, 2024. "Multi-Objective Profit-Based Unit Commitment with Renewable Energy and Energy Storage Units Using a Modified Optimization Method," Sustainability, MDPI, vol. 16(4), pages 1-29, February.
    19. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    20. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:12:y:2023:i:2:n:e461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.