IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v12y2023i1ne457.html
   My bibliography  Save this article

Overview of hydrogen economy in Australia

Author

Listed:
  • Sanjay Kumar Kar
  • Akhoury Sudhir Kumar Sinha
  • Rohit Bansal
  • Bahman Shabani
  • Sidhartha Harichandan

Abstract

The hydrogen economy is on the verge of expansion across the globe. Leading economies like Japan, South Korea, China, the United States of America, Germany, and Australia are steadily pushing for greater hydrogen integration into their energy systems. Australia's thrust on the hydrogen economy becomes prominent with clear strategic actions to enhance clean technology‐based hydrogen production. The paper critically analyses Australia's strategies and policies to expand its hydrogen economy. The paper found that Australia fixed ambitious targets to increase hydrogen penetration in the domestic market and export to Japan, China, and South Korea. Australia's national hydrogen strategy emphasized creating a strong hydrogen value chain to capitalize on abundant renewable resources. This article affirms that Australia has enormous potential for cost‐competitive green hydrogen production and export. Australia's cost‐competitive green hydrogen production with modern supply chain infrastructure will offer competitive advantages over the other exporters. States/regions are trying to align their hydrogen policies and strategies along the lines of the national strategy. However, some concerns demand timely attention from the stakeholders. Australia should address multiple challenges, including a lack of investment, lower public awareness, and insufficient infrastructure to push hydrogen adoption in the domestic market. Further, Australia must utilize its strengths to take advantage of the emerging hydrogen markets in Japan, China, and South Korea. This article is categorized under: Sustainable Energy > Other Renewables Emerging Technologies > Hydrogen and Fuel Cells Policy and Economics > Regional and International Strategies

Suggested Citation

  • Sanjay Kumar Kar & Akhoury Sudhir Kumar Sinha & Rohit Bansal & Bahman Shabani & Sidhartha Harichandan, 2023. "Overview of hydrogen economy in Australia," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
  • Handle: RePEc:bla:wireae:v:12:y:2023:i:1:n:e457
    DOI: 10.1002/wene.457
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.457
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoon‐Hee Ha & John Byrne, 2019. "The rise and fall of green growth: Korea's energy sector experiment and its lessons for sustainable energy policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(4), July.
    2. John A. “Skip” Laitner, 2015. "Linking energy efficiency to economic productivity: recommendations for improving the robustness of the U.S. economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(3), pages 235-252, May.
    3. Blanchette Jr., Stephen, 2008. "A hydrogen economy and its impact on the world as we know it," Energy Policy, Elsevier, vol. 36(2), pages 522-530, February.
    4. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    5. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Nshimiyimana, Jean Pierre, 2021. "Evaluating strategies for renewable energy development in Rwanda: An integrated SWOT – ISM analysis," Renewable Energy, Elsevier, vol. 176(C), pages 402-414.
    6. Bento, Nuno, 2010. "Is carbon lock-in blocking investments in the hydrogen economy? A survey of actors' strategies," Energy Policy, Elsevier, vol. 38(11), pages 7189-7199, November.
    7. Ally, Jamie & Pryor, Trevor, 2016. "Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus systems: An Australian case study," Energy Policy, Elsevier, vol. 94(C), pages 285-294.
    8. McDowall, William & Eames, Malcolm, 2006. "Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature," Energy Policy, Elsevier, vol. 34(11), pages 1236-1250, July.
    9. Adrien Vogt‐Schilb & Stephane Hallegatte, 2017. "Climate policies and nationally determined contributions: reconciling the needed ambition with the political economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(6), November.
    10. Shi, Xunpeng & Liao, Xun & Li, Yanfei, 2020. "Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework," Renewable Energy, Elsevier, vol. 154(C), pages 786-796.
    11. Manuela Ingaldi & Dorota Klimecka-Tatar, 2020. "People’s Attitude to Energy from Hydrogen—From the Point of View of Modern Energy Technologies and Social Responsibility," Energies, MDPI, vol. 13(24), pages 1-19, December.
    12. John Andrews & Bahman Shabani, 2014. "The role of hydrogen in a global sustainable energy strategy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(5), pages 474-489, September.
    13. Hancock, Linda & Ralph, Natalie, 2021. "A framework for assessing fossil fuel ‘retrofit’ hydrogen exports: Security-justice implications of Australia’s coal-generated hydrogen exports to Japan," Energy, Elsevier, vol. 223(C).
    14. Gkoltsiou, Aikaterini & Mougiakou, Eleni, 2021. "The use of Islandscape character assessment and participatory spatial SWOT analysis to the strategic planning and sustainable development of small islands. The case of Gavdos," Land Use Policy, Elsevier, vol. 103(C).
    15. Sovacool, Benjamin K. & Bazilian, Morgan & Griffiths, Steve & Kim, Jinsoo & Foley, Aoife & Rooney, David, 2021. "Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    2. Bolz, Susanna & Thiele, Julian & Wendler, Tobias, 2024. "Regional capabilities and hydrogen adoption barriers," Energy Policy, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Missbach, Leonard & Steckel, Jan Christoph & Vogt-Schilb, Adrien, 2024. "Cash transfers in the context of carbon pricing reforms in Latin America and the Caribbean," World Development, Elsevier, vol. 173(C).
    2. Malerba, Daniele, 2020. "Poverty alleviation and local environmental degradation: An empirical analysis in Colombia," World Development, Elsevier, vol. 127(C).
    3. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    4. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    5. Nils Ohlendorf & Michael Jakob & Jan Christoph Minx & Carsten Schröder & Jan Christoph Steckel, 2021. "Distributional Impacts of Carbon Pricing: A Meta-Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 1-42, January.
    6. D'Orazio, Paola & Hertel, Tobias & Kasbrink, Fynn, 2022. "No need to worry? Estimating the exposure of the German banking sector to climate-related transition risks," Ruhr Economic Papers 946, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    8. Jakob, Michael & Soria, Rafael & Trinidad, Carlos & Edenhofer, Ottmar & Bak, Céline & Bouille, Daniel & Buira, Daniel & Carlino, Hernan & Gutman, Veronica & Hübner, Christian & Knopf, Brigitte & Lucen, 2019. "Green fiscal reform for a just energy transition in Latin America," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-11.
    9. Böhringer, Christoph & Rosendahl, Knut Einar, 2022. "Europe beyond coal – An economic and climate impact assessment," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    10. Sarah Hafner & Olivia James & Aled Jones, 2019. "A Scoping Review of Barriers to Investment in Climate Change Solutions," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    11. Chryso Sotiriou & Theodoros Zachariadis, 2019. "Optimal Timing of Greenhouse Gas Emissions Abatement in Europe," Energies, MDPI, vol. 12(10), pages 1-15, May.
    12. Malerba, Daniele & Gaentzsch, Anja & Ward, Hauke, 2021. "Mitigating poverty: The patterns of multiple carbon tax and recycling regimes for Peru," Energy Policy, Elsevier, vol. 149(C).
    13. Vogt-Schilb, Adrien & Feng, Kuishuang, 2019. "The Labor Impact of Coal Phase Down Scenarios in Chile," EconStor Preprints 216904, ZBW - Leibniz Information Centre for Economics.
    14. Daniele Malerba, 2022. "The Effects of Social Protection and Social Cohesion on the Acceptability of Climate Change Mitigation Policies: What Do We (Not) Know in the Context of Low- and Middle-Income Countries?," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(3), pages 1358-1382, June.
    15. Andreas Fazekas & Christopher Bataille & Adrien Vogt-Schilb, 2022. "Achieving net-zero prosperity: how governments can unlock 15 essential transformations," Post-Print halshs-03742125, HAL.
    16. Nils Ohlendorf & Michael Jakob & Jan Christoph Minx & Carsten Schröder & Jan Christoph Steckel, 2018. "Distributional Impacts of Climate Mitigation Policies - a Meta-Analysis," Discussion Papers of DIW Berlin 1776, DIW Berlin, German Institute for Economic Research.
    17. Alazemi, Jasem & Andrews, John, 2015. "Automotive hydrogen fuelling stations: An international review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 483-499.
    18. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2020. "Instrument choice and stranded assets in the transition to clean capital," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    19. Janeth Carolina Godoy & Daniel Villamar & Rafael Soria & César Vaca & Thomas Hamacher & Freddy Ordóñez, 2021. "Preparing the Ecuador’s Power Sector to Enable a Large-Scale Electric Land Transport," Energies, MDPI, vol. 14(18), pages 1-22, September.
    20. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:12:y:2023:i:1:n:e457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.