IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v74y2020i3p439-457.html
   My bibliography  Save this article

Hierarchical models for independence structures of networks

Author

Listed:
  • Kayvan Sadeghi
  • Alessandro Rinaldo

Abstract

We introduce a new family of network models, called hierarchical network models, that allow us to represent in an explicit manner the stochastic dependence among the dyads (random ties) of the network. In particular, each member of this family can be associated with a graphical model defining conditional independence clauses among the dyads of the network, called the dependency graph. Every network model with dyadic independence assumption can be generalized to construct members of this new family. Using this new framework, we generalize the Erdös–Rényi and the β models to create hierarchical Erdös–Rényi and β models. We describe various methods for parameter estimation, as well as simulation studies for models with sparse dependency graphs.

Suggested Citation

  • Kayvan Sadeghi & Alessandro Rinaldo, 2020. "Hierarchical models for independence structures of networks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 439-457, August.
  • Handle: RePEc:bla:stanee:v:74:y:2020:i:3:p:439-457
    DOI: 10.1111/stan.12200
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12200
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos Lozares & Joan Verd & Irene Cruz & Oriol Barranco, 2014. "Homophily and heterophily in personal networks. From mutual acquaintance to relationship intensity," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(5), pages 2657-2670, September.
    2. Mathias Drton & Thomas S. Richardson, 2008. "Binary models for marginal independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 287-309, April.
    3. Hunter, David R. & Goodreau, Steven M. & Handcock, Mark S., 2013. "ergm.userterms: A Template Package for Extending statnet," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i02).
    4. A. Roverato & M. Lupparelli & L. La Rocca, 2013. "Log-mean linear models for binary data," Biometrika, Biometrika Trust, vol. 100(2), pages 485-494.
    5. Hunter, David R. & Goodreau, Steven M. & Handcock, Mark S., 2008. "Goodness of Fit of Social Network Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 248-258, March.
    6. Steffen Lauritzen & Alessandro Rinaldo & Kayvan Sadeghi, 2018. "Random networks, graphical models and exchangeability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 481-508, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Ntzoufras & Claudia Tarantola, 2012. "Conjugate and Conditional Conjugate Bayesian Analysis of Discrete Graphical Models of Marginal Independence," Quaderni di Dipartimento 178, University of Pavia, Department of Economics and Quantitative Methods.
    2. John McLevey & Alexander V. Graham & Reid McIlroy-Young & Pierson Browne & Kathryn S. Plaisance, 2018. "Interdisciplinarity and insularity in the diffusion of knowledge: an analysis of disciplinary boundaries between philosophy of science and the sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 331-349, October.
    3. Kei, Yik Lun & Chen, Yanzhen & Madrid Padilla, Oscar Hernan, 2023. "A partially separable model for dynamic valued networks," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    4. Alberto Roverato, 2015. "Log-mean Linear Parameterization for Discrete Graphical Models of Marginal Independence and the Analysis of Dichotomizations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 627-648, June.
    5. He, Xi-jun & Dong, Yan-bo & Wu, Yu-ying & Jiang, Guo-rui & Zheng, Yao, 2019. "Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 443-457.
    6. Monia Lupparelli & Alberto Roverato, 2017. "Log-mean linear regression models for binary responses with an application to multimorbidity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 227-252, February.
    7. Ntzoufras, Ioannis & Tarantola, Claudia, 2013. "Conjugate and conditional conjugate Bayesian analysis of discrete graphical models of marginal independence," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 161-177.
    8. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    9. Robin J. Evans & Thomas S. Richardson, 2013. "Marginal log-linear parameters for graphical Markov models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 743-768, September.
    10. Per Block & Christoph Stadtfeld & Tom A. B. Snijders, 2019. "Forms of Dependence: Comparing SAOMs and ERGMs From Basic Principles," Sociological Methods & Research, , vol. 48(1), pages 202-239, February.
    11. Koenig, Michael & Hsieh, Chih-Sheng & Liu, Xiaodong & Zimmermann, Christian, 2018. "Superstar Economists: Coauthorship networks and research output," CEPR Discussion Papers 13239, C.E.P.R. Discussion Papers.
    12. Sándor Juhász, 2021. "Spinoffs and tie formation in cluster knowledge networks," Small Business Economics, Springer, vol. 56(4), pages 1385-1404, April.
    13. Oriol Barranco & Carlos Lozares & Dafne Muntanyola-Saura, 2019. "Heterophily in social groups formation: a social network analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(2), pages 599-619, March.
    14. Giovannetti, Andrea & Pipic, Denis, 2023. "Shaking hands with common foes: Clique premium and information diffusion in private equity networks," International Review of Financial Analysis, Elsevier, vol. 86(C).
    15. Emily Casleton & Daniel J. Nordman & Mark S. Kaiser, 2022. "Modeling Transitivity in Local Structure Graph Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 389-417, June.
    16. Tom A. B. Snijders & Christian E. G. Steglich, 2015. "Representing Micro–Macro Linkages by Actor-based Dynamic Network Models," Sociological Methods & Research, , vol. 44(2), pages 222-271, May.
    17. Chih-Sheng Hsieh & Michael D. Konig & Xiaodong Liu, 2022. "A Structural Model for the Coevolution of Networks and Behavior," The Review of Economics and Statistics, MIT Press, vol. 104(2), pages 355-367, May.
    18. Liu, Linqing & Shen, Mengyun & Sun, Da & Yan, Xiaofei & Hu, Shi, 2022. "Preferential attachment, R&D expenditure and the evolution of international trade networks from the perspective of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    19. Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020. "Dynamic interbank network analysis using latent space models," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    20. Federica Bianchi & Francesco Bartolucci & Stefano Peluso & Antonietta Mira, 2020. "Longitudinal networks of dyadic relationships using latent trajectories: evidence from the European interbank market," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 711-739, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:74:y:2020:i:3:p:439-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.