IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v72y2018i4p590-602.html
   My bibliography  Save this article

Reconciliation of seasonally adjusted data with applications to the Swedish quarterly national accounts

Author

Listed:
  • Suad Elezović
  • Yingfu Xie

Abstract

Because of the nonlinearity of the seasonal adjustment procedure, the equality between an aggregate series and the sum of its components usually breaks down after seasonally adjusting the series separately. However, some users of official statistics still request consistency between the seasonally adjusted aggregate series and the sum of the corresponding subseries. To achieve the aggregation consistency, a general Denton‐type reconciliation procedure is proposed here. The additivity constraint is imposed on seasonally adjusted components balancing between magnitude and volatility of each series. Some evaluation criteria, based on a set of chosen minimization functions, are further discussed. The implementation and choice of approaches are discussed through a real example by reconciliation of time series in constant prices from the Swedish quarterly national accounts. Finally, some limitations of the method are outlined and possible future works are proposed.

Suggested Citation

  • Suad Elezović & Yingfu Xie, 2018. "Reconciliation of seasonally adjusted data with applications to the Swedish quarterly national accounts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 590-602, November.
  • Handle: RePEc:bla:stanee:v:72:y:2018:i:4:p:590-602
    DOI: 10.1111/stan.12155
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12155
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Di Fonzo, Tommaso, 1990. "The Estimation of M Disaggregate Time Series When Contemporaneous and Temporal Aggregates Are Known," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 178-182, February.
    2. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    3. Tommaso Di Fonzo & Marco Marini, 2011. "Simultaneous and two‐step reconciliation of systems of time series: methodological and practical issues," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(2), pages 143-164, March.
    4. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tucker McElroy, 2018. "Seasonal adjustment subject to accounting constraints," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 574-589, November.
    2. Abid, Ilyes & Goutte, Stéphane & Guesmi, Khaled & Jamali, Ibrahim, 2019. "Transmission of shocks and contagion from U.S. to MENA equity markets: The role of oil and gas markets," Energy Policy, Elsevier, vol. 134(C).
    3. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    4. Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Efectos calendario sobre la producción industrial en Colombia," Borradores de Economia 820, Banco de la Republica de Colombia.
    5. Cruz-Rodríguez, Alexis, 2004. "Un análisis del ciclo económico de la República Dominicana bajo cambios de régimen [Analysis of business cycle of the Dominican Republic using Markov Switching model]," MPRA Paper 54352, University Library of Munich, Germany.
    6. Mauricio Gallardo & Hernán Rubio, 2009. "Diagnóstico de estacionalidad con X-12-ARIMA," Economic Statistics Series 76, Central Bank of Chile.
    7. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    8. Kroes, James R. & Manikas, Andrew S. & Gattiker, Thomas F., 2018. "Operational leanness and retail firm performance since 1980," International Journal of Production Economics, Elsevier, vol. 197(C), pages 262-274.
    9. Yi-Hsuan Lee & Shelby Haberman, 2013. "Harmonic Regression and Scale Stability," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 815-829, October.
    10. Quenneville, Benoit & Ladiray, Dominique & Lefrancois, Bernard, 2003. "A note on Musgrave asymmetrical trend-cycle filters," International Journal of Forecasting, Elsevier, vol. 19(4), pages 727-734.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Cobb, Marcus, 2014. "Identifying the Sources of Seasonal Effects in an indirectly adjusted Chain-Linked Aggregate: A Framework for the Annual Overlap Method," MPRA Paper 58033, University Library of Munich, Germany.
    13. Medel, Carlos, 2015. "Inflation Dynamics and the Hybrid Neo Keynesian Phillips Curve: The Case of Chile," MPRA Paper 62609, University Library of Munich, Germany.
    14. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    15. Massmann, Michael & Mitchell, James, 2003. "Reconsidering the evidence: Are Eurozone business cycles converging," ZEI Working Papers B 05-2003, University of Bonn, ZEI - Center for European Integration Studies.
    16. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    17. James Laurenceson & Corrine Dobson, "undated". "China’s business cycles since 1979: a chronology and comparative analysis," EAERG Discussion Paper Series 1705, School of Economics, University of Queensland, Australia.
    18. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    19. Ayadi, Ahmed & Gana, Marjène & Goutte, Stéphane & Guesmi, Khaled, 2021. "Equity-commodity contagion during four recent crises: Evidence from the USA, Europe and the BRICS," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 376-423.
    20. Hai Yue Liu & Xiao Lan Chen, 2017. "The imported price, inflation and exchange rate pass-through in China," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1279814-127, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:72:y:2018:i:4:p:590-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.