IDEAS home Printed from https://ideas.repec.org/a/bla/canjag/v66y2018i2p283-303.html
   My bibliography  Save this article

Crop Yield Response to Climate Variables on Dryland versus Irrigated Lands

Author

Listed:
  • Wei Lu
  • Wiktor Adamowicz
  • Scott R. Jeffrey
  • Greg G. Goss
  • Monireh Faramarzi

Abstract

Key Points We examine the response of barley, canola, and spring wheat yields to a set of climate variables on both dryland and irrigated lands in southern Alberta, Canada. We find that warming and increased precipitation tend to increase crop yields on dryland, increased precipitation in June and July tends to show opposite effects on crop yields on irrigated lands. Based on regional climate change projection scenarios, we find that climate change decreases crop yields for all the three crops under dryland production. However, yields of canola and spring wheat under irrigation are slightly increased. Few researchers have examined the impact of climate change on irrigated agriculture and crop production. This may be due to an assumption by researchers that irrigation management can offset impacts of climate change. We investigate this issue by examining the response of barley, canola, and spring wheat yields to a set of climate variables on both dryland and irrigated lands in southern Alberta, Canada, with a panel data set at the county level from 1983 to 2007. Our results suggest that warming and increased precipitation tend to increase dryland crop yields, while increased precipitation in June and July tends to show opposite effects on crop yields on irrigated lands. Based on regional projected climate change scenarios, we find that climate change decreases crop yields for all the three crops under dryland production. However, yields of canola and spring wheat under irrigation are increased slightly. Peu de chercheurs se sont penchés sur les impacts des changements climatiques sur l'agriculture irriguée et le rendement des cultures. Il se pourrait que ce soit parce que les chercheurs supposent que les régimes d'irrigation peuvent neutralise les impacts des changements climatiques. Nous examinons cet enjeu en étudiant le rendement de l'orge, du canola et du blé de printemps en fonction de variables climatiques à la fois en sols arides et en sols irrigués au sud de l'Alberta, au Canada avec un ensemble de données de panel provenant des comtés de 1983 à 2007. Les résultats démontrent que le réchauffement et l'augmentation des précipitations semblent accroître le rendement des sols arides mais que cette dernière, lorsqu'elle survient en juin ou juillet, semble engendrer l'effet contraire sur le rendement en sols irrigués. Nous constatons, selon les scénarios hypothétiques de changements climatiques régionaux, une diminution du rendement agricole pour les trois cultures en sols arides. Par contre, le rendement des cultures de canola et de blé de printemps en sols irrigués augmenterait légèrement.

Suggested Citation

  • Wei Lu & Wiktor Adamowicz & Scott R. Jeffrey & Greg G. Goss & Monireh Faramarzi, 2018. "Crop Yield Response to Climate Variables on Dryland versus Irrigated Lands," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(2), pages 283-303, June.
  • Handle: RePEc:bla:canjag:v:66:y:2018:i:2:p:283-303
    DOI: 10.1111/cjag.12149
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/cjag.12149
    Download Restriction: no

    File URL: https://libkey.io/10.1111/cjag.12149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bryce Stewart & Terrence Veeman & James Unterschultz, 2009. "Crops and Livestock Productivity Growth in the Prairies: The Impacts of Technical Change and Scale," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(3), pages 379-394, September.
    2. Ruiqing Miao & Madhu Khanna & Haixiao Huang, 2016. "Responsiveness of Crop Yield and Acreage to Prices and Climate," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 191-211.
    3. Richard Carew & Elwin G. Smith, 2006. "Assessing the Contribution of Genetic Enhancements and Fertilizer Application Regimes on Canola Yield and Production Risk in Manitoba," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 54(2), pages 215-226, June.
    4. Elizabeth Marshall, & Marcel Aillery, & Scott Malcolm, & Ryan Williams,, 2015. "Climate Change, Water Scarcity, and Adaptation in the U.S. Fieldcrop Sector," Economic Research Report 262203, United States Department of Agriculture, Economic Research Service.
    5. Burke, M. & Craxton, M. & Kolstad, C.D. & Onda, C. & Allcott, H. & Baker, E. & Barrage, L. & Carson, R. & Gillingham, K. & Graff-Zivin, J. & Greenstone, M. & Hallegatte, S. & Hanemann, W.M. & Heal, G., 2016. "Opportunities for advances in climate change economics," ISU General Staff Papers 3565, Iowa State University, Department of Economics.
    6. Burke, M & Craxton, M & Kolstad, CD & Onda, C & Allcott, H & Baker, E & Barrage, L & Carson, R & Gillingham, K & Graf-Zivin, J & Greenstone, M & Hallegatte, S & Hanemann, WM & Heal, G & Hsiang, S & Jo, 2016. "Opportunities for advances in climate change economics," University of California at Santa Barbara, Recent Works in Economics qt4tc5d9pb, Department of Economics, UC Santa Barbara.
    7. Schierhorn, Florian & Faramarzi, Monireh & Prishchepov, Alexander V. & Koch, Friedrich J. & Müller, Daniel, 2014. "Quantifying yield gaps in wheat production in Russia," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(8), pages 1-12.
    8. Solomon M. Hsiang, 2016. "Climate Econometrics," NBER Working Papers 22181, National Bureau of Economic Research, Inc.
    9. Bruce A. McCarl & Xavier Villavicencio & Ximing Wu, 2008. "Climate Change and Future Analysis: Is Stationarity Dying?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1241-1247.
    10. Solomon Hsiang, 2016. "Climate Econometrics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 43-75, October.
    11. Daniel Hoechle, 2007. "Robust standard errors for panel regressions with cross-sectional dependence," Stata Journal, StataCorp LP, vol. 7(3), pages 281-312, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Yu & J. Stephen Clark & Qingsong Tian & Fengxian Yan, 2022. "Rice yield response to climate and price policy in high-latitude regions of China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1143-1157, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    2. Cui, Xiaomeng & Zhong, Zheng, 2024. "Climate change, cropland adjustments, and food security: Evidence from China," Journal of Development Economics, Elsevier, vol. 167(C).
    3. Noah Miller & Jesse Tack & Jason Bergtold, 2021. "The Impacts of Warming Temperatures on US Sorghum Yields and the Potential for Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1742-1758, October.
    4. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    5. Aragón, Fernando M. & Restuccia, Diego & Rud, Juan Pablo, 2022. "Are small farms really more productive than large farms?," Food Policy, Elsevier, vol. 106(C).
    6. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    7. Guglielmo Zappalà, 2023. "Drought Exposure and Accuracy: Motivated Reasoning in Climate Change Beliefs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(3), pages 649-672, August.
    8. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    9. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    10. Francesca Marchetta & David E Sahn & Luca Tiberti, 2019. "The Role of Weather on Schooling and Work of Young Adults in Madagascar," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1203-1227.
    11. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    12. Díaz, Juan-José & Saldarriaga, Victor, 2023. "A drop of love? Rainfall shocks and spousal abuse: Evidence from rural Peru," Journal of Health Economics, Elsevier, vol. 89(C).
    13. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    14. Lee, Wang-Sheng & Li, Ben G., 2021. "Extreme weather and mortality: Evidence from two millennia of Chinese elites," Journal of Health Economics, Elsevier, vol. 76(C).
    15. Isabelle Chort & Maëlys de la Rupelle, 2022. "Managing the impact of climate on migration: evidence from Mexico," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1777-1819, October.
    16. Desbureaux, Sébastien & Rodella, Aude-Sophie, 2019. "Drought in the city: The economic impact of water scarcity in Latin American metropolitan areas," World Development, Elsevier, vol. 114(C), pages 13-27.
    17. Ding, Yugang & Xu, Jiangmin, 2023. "Global vulnerability of agricultural commodities to climate risk: Evidence from satellite data," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 669-687.
    18. Sven Kunze, 2021. "Unraveling the Effects of Tropical Cyclones on Economic Sectors Worldwide: Direct and Indirect Impacts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 545-569, April.
    19. Cuong Viet Nguyen & Manh‐Hung Nguyen & Toan Truong Nguyen, 2023. "The impact of cold waves and heat waves on mortality: Evidence from a lower middle‐income country," Health Economics, John Wiley & Sons, Ltd., vol. 32(6), pages 1220-1243, June.
    20. Oscar Zapata, 2023. "Weather Disasters, Material Losses and Income Inequality: Evidence from a Tropical, Middle-Income Country," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 231-251, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:canjag:v:66:y:2018:i:2:p:283-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.