IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2103-2115.html
   My bibliography  Save this article

Elastic analysis of irregularly or sparsely sampled curves

Author

Listed:
  • Lisa Steyer
  • Almond Stöcker
  • Sonja Greven

Abstract

We provide statistical analysis methods for samples of curves in two or more dimensions, where the image, but not the parameterization of the curves, is of interest and suitable alignment/registration is thus necessary. Examples are handwritten letters, movement paths, or object outlines. We focus in particular on the computation of (smooth) means and distances, allowing, for example, classification or clustering. Existing parameterization invariant analysis methods based on the elastic distance of the curves modulo parameterization, using the square‐root‐velocity framework, have limitations in common realistic settings where curves are irregularly and potentially sparsely observed. We propose using spline curves to model smooth or polygonal (Fréchet) means of open or closed curves with respect to the elastic distance and show identifiability of the spline model modulo parameterization. We further provide methods and algorithms to approximate the elastic distance for irregularly or sparsely observed curves, via interpreting them as polygons. We illustrate the usefulness of our methods on two datasets. The first application classifies irregularly sampled spirals drawn by Parkinson's patients and healthy controls, based on the elastic distance to a mean spiral curve computed using our approach. The second application clusters sparsely sampled GPS tracks based on the elastic distance and computes smooth cluster means to find new paths on the Tempelhof field in Berlin. All methods are implemented in the R‐package “elasdics” and evaluated in simulations.

Suggested Citation

  • Lisa Steyer & Almond Stöcker & Sonja Greven, 2023. "Elastic analysis of irregularly or sparsely sampled curves," Biometrics, The International Biometric Society, vol. 79(3), pages 2103-2115, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2103-2115
    DOI: 10.1111/biom.13706
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13706
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Backenroth & Jeff Goldsmith & Michelle D. Harran & Juan C. Cortes & John W. Krakauer & Tomoko Kitago, 2018. "Modeling Motor Learning Using Heteroscedastic Functional Principal Components Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1003-1015, July.
    2. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phoebe Koundouri & Georgios I. Papayiannis & Electra V. Petracou & Athanasios N. Yannacopoulos, 2023. "Consensus group decision making under model uncertainty with a view towards environmental policy making," Papers 2312.00436, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
    2. Park, Juhyun & Gasser, Theo & Rousson, Valentin, 2009. "Structural components in functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3452-3465, July.
    3. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    4. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    5. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised Aug 2022.
    6. Cao, Guanqun & Wang, Li, 2018. "Simultaneous inference for the mean of repeated functional data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 279-295.
    7. Şentürk, Damla & Ghosh, Samiran & Nguyen, Danh V., 2014. "Exploratory time varying lagged regression: Modeling association of cognitive and functional trajectories with expected clinic visits in older adults," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 1-15.
    8. Wang, Jingxing & Chung, Seokhyun & AlShelahi, Abdullah & Kontar, Raed & Byon, Eunshin & Saigal, Romesh, 2021. "Look-ahead decision making for renewable energy: A dynamic “predict and store” approach," Applied Energy, Elsevier, vol. 296(C).
    9. Heredia, María Belén & Prieur, Clémentine & Eckert, Nicolas, 2022. "Global sensitivity analysis with aggregated Shapley effects, application to avalanche hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    11. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    12. Koltchinskii, V. & Lounici, K. & Tsybakov, A.B., 2016. "Estimation of low-rank covariance function," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3952-3967.
    13. Cederbaum, Jona & Scheipl, Fabian & Greven, Sonja, 2018. "Fast symmetric additive covariance smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 25-41.
    14. Cai Li & Luo Xiao & Sheng Luo, 2022. "Joint model for survival and multivariate sparse functional data with application to a study of Alzheimer's Disease," Biometrics, The International Biometric Society, vol. 78(2), pages 435-447, June.
    15. Febrero-Bande, Manuel & González-Manteiga, Wenceslao & Prallon, Brenda & Saporito, Yuri F., 2023. "Functional classification of bitcoin addresses," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    16. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    17. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    18. Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
    19. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    20. Craig, Sarah J.C. & Kenney, Ana M. & Lin, Junli & Paul, Ian M. & Birch, Leann L. & Savage, Jennifer S. & Marini, Michele E. & Chiaromonte, Francesca & Reimherr, Matthew L. & Makova, Kateryna D., 2023. "Constructing a polygenic risk score for childhood obesity using functional data analysis," Econometrics and Statistics, Elsevier, vol. 25(C), pages 66-86.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2103-2115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.