IDEAS home Printed from https://ideas.repec.org/a/arp/srarsr/2020p53-61.html
   My bibliography  Save this article

Volume Fractions of Tantalum Carbides Deduced from the Ta Contents in the Matrix of Three 1250°C–Aged Cobalt–Based Alloys; Comparison with Thermodynamic Calculations

Author

Listed:
  • Patrice Berthod

    (Université de Lorraine, CNRS, IJL, F-54000 Nancy, France)

Abstract

Some superalloys for service at high temperature under stresses are strengthened by tantalum carbides. Their creep resistance depends on the quantity of TaC and this is the reason why it is often important to control the volume fraction of these carbides in the microstructure. Metallographic preparation followed by electron imaging and surface fraction measurements by image analysis is a frequent way for that. Another possibility is to deduce the mass fraction of TaC, and after their volume fraction, from the chemical composition of the matrix when the alloys are only double–phased, on the {matrix + TaC} type. In this work three alloys – chemically designed to be made exclusively of matrix and TaC – were elaborated and isothermally exposed to an elevated temperature for a duration long enough to allow the alloys being at their thermodynamic equilibria. The chemical compositions of the alloy and of its matrix were measured and the results allowed evaluating their TaC mass fractions which were converted in volume fractions. The obtained TaC fractions were compared to results issued from thermodynamic calculations. Good agreement was found for the three alloys, and this allowed to exploit the used software and thermodynamic database to explore further the microstructures at the same high temperature, notably to know the conditions on the Co, Ni, Cr, Ta and C contents to keep the {matrix + TaC} structure and to avoid any possible partial melting.

Suggested Citation

  • Patrice Berthod, 2020. "Volume Fractions of Tantalum Carbides Deduced from the Ta Contents in the Matrix of Three 1250°C–Aged Cobalt–Based Alloys; Comparison with Thermodynamic Calculations," Scientific Review, Academic Research Publishing Group, vol. 6(7), pages 53-61, 07-2020.
  • Handle: RePEc:arp:srarsr:2020:p:53-61
    DOI: 10.32861/sr.67.53.61
    as

    Download full text from publisher

    File URL: https://www.arpgweb.com/pdf-files/sr6(7)53-61.pdf
    Download Restriction: no

    File URL: https://www.arpgweb.com/journal/10/archive/07-2020/7/6
    Download Restriction: no

    File URL: https://libkey.io/10.32861/sr.67.53.61?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arp:srarsr:2020:p:53-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Managing Editor (email available below). General contact details of provider: http://arpgweb.com/index.php?ic=journal&journal=10&info=aims .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.