IDEAS home Printed from https://ideas.repec.org/a/ann/inecon/y2016i15p182-198.html
   My bibliography  Save this article

Współpraca polsko-litewska w kontekście utworzenia wspólnego europejskiego rynku energii w latach 2004–2015 / Polish-Lithuanian Cooperation in the Context of the Common European Energy Market Formation in 2004–2015

Author

Listed:
  • Stanisław Pilżys

    (University of Bialystok)

Abstract

The purpose of this article is to present Lithuanian and Polish cooperation on joint energy projects in 2004–2015 in line with the European Union’s initiative to build the Common European Energy Market. Polish-Lithuanian cooperation has intensified after both countries’ accession to the EU, and the most important areas of cooperation of the analyzed countries include the construction of a power bridge, construction of a pipeline, cooperation in the construction of the Visaginas Nuclear Power Plant and cooperation within the framework of BEMIP. Despite the declarations, none of the joint projects is being developed in accordance with agreed plans. This article tries to clarify the cause of cooperation, how it developed, the main barriers and difficulties, and the possible consequences that arise after the implementation of the analyzed projects.

Suggested Citation

  • Stanisław Pilżys, 2016. "Współpraca polsko-litewska w kontekście utworzenia wspólnego europejskiego rynku energii w latach 2004–2015 / Polish-Lithuanian Cooperation in the Context of the Common European Energy Market Formatio," International Economics, University of Lodz, Faculty of Economics and Sociology, issue 15, pages 182-198, September.
  • Handle: RePEc:ann:inecon:y:2016:i:15:p:182-198
    as

    Download full text from publisher

    File URL: http://dspace.uni.lodz.pl:8080/xmlui/bitstream/handle/11089/20803/Pil%C5%BCys%202016.pdf?sequence=1&isAllowed=y
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Dong & Tongyu Qin & Siyuan Zhou & Lu Huang & Rui Bo & Haibo Guo & Xunzhi Yin, 2020. "Comparative Whole Building Life Cycle Assessment of Energy Saving and Carbon Reduction Performance of Reinforced Concrete and Timber Stadiums—A Case Study in China," Sustainability, MDPI, vol. 12(4), pages 1-24, February.
    2. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    3. Yu, Jinghua & Ye, Hong & Xu, Xinhua & Huang, Junchao & Liu, Yunxi & Wang, Jinbo, 2018. "Experimental study on the thermal performance of a hollow block ventilation wall," Renewable Energy, Elsevier, vol. 122(C), pages 619-631.
    4. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    6. Qi-Gan Shao & James J. H. Liou & Sung-Shun Weng & Yen-Ching Chuang, 2018. "Improving the Green Building Evaluation System in China Based on the DANP Method," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    7. Xuejing Zheng & Boxiao Xu & Shijun You & Huan Zhang & Yaran Wang & Leizhai Sun, 2020. "Energy Consumption and CO 2 Emissions of Coach Stations in China," Energies, MDPI, vol. 13(14), pages 1-22, July.
    8. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    9. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
    10. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    11. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    12. Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.
    13. Yijun Fu & Shicong Zhang & Xi Chen & Wei Xu, 2021. "Sino-American Building Energy Standards Comparison and Recommendations towards Zero Energy Building," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    14. Ranka Gajić & Darinka Golubović-Matić & Biserka Mitrović & Svetlana Batarilo & Milena Kordić, 2021. "The Methodology for Supporting Land Use Management in Collective Housing towards Achieving Energy Efficiency: A Case Study of New Belgrade, Serbia," Land, MDPI, vol. 10(1), pages 1-25, January.
    15. Chao Ding & Nan Zhou, 2020. "Using Residential and Office Building Archetypes for Energy Efficiency Building Solutions in an Urban Scale: A China Case Study," Energies, MDPI, vol. 13(12), pages 1-16, June.
    16. Li, Xinyi & Yao, Runming & Li, Qin & Ding, Yong & Li, Baizhan, 2018. "An object-oriented energy benchmark for the evaluation of the office building stock," Utilities Policy, Elsevier, vol. 51(C), pages 1-11.
    17. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2016. "Development of a statistical analysis model to benchmark the energy use intensity of subway stations," Applied Energy, Elsevier, vol. 179(C), pages 488-496.
    18. Shiyu Wan & Grace Ding & Goran Runeson & Yisheng Liu, 2022. "Sustainable Buildings’ Energy-Efficient Retrofitting: A Study of Large Office Buildings in Beijing," Sustainability, MDPI, vol. 14(2), pages 1-24, January.
    19. Muhammad Shahid Mastoi & Hafiz Mudassir Munir & Shenxian Zhuang & Mannan Hassan & Muhammad Usman & Ahmad Alahmadi & Basem Alamri, 2022. "A Comprehensive Analysis of the Power Demand–Supply Situation, Electricity Usage Patterns, and the Recent Development of Renewable Energy in China," Sustainability, MDPI, vol. 14(6), pages 1-34, March.
    20. Shiying Li & Jae-Weon Jeong, 2018. "Energy Performance of Liquid Desiccant and Evaporative Cooling-Assisted 100% Outdoor Air Systems under Various Climatic Conditions," Energies, MDPI, vol. 11(6), pages 1-22, May.

    More about this item

    Keywords

    Polish-Lithuanian cooperation; electric power sector; energy policy;
    All these keywords.

    JEL classification:

    • F15 - International Economics - - Trade - - - Economic Integration
    • F55 - International Economics - - International Relations, National Security, and International Political Economy - - - International Institutional Arrangements
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ann:inecon:y:2016:i:15:p:182-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: International Economics (email available below). General contact details of provider: https://edirc.repec.org/data/welodpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.