Delayed Income Taxation and Fluctuations

Christian Zimmermann (CREFÉ, UQAM, Bank of Canada)

- instantaneous taxation of all income
- taxation of labor income delayed one year
- taxation of labor and capital income delayed one year

The model

$$E\sum_{t=0}^{\infty}\beta^{t}U(c_{t},l_{t}), \quad 0>\beta>1,$$

$$y_t = z_t F(k_t, h_t),$$

$$z_{t+1} = \bar{z} + \rho z_t + \varepsilon_{t+1}, \quad 0 > \rho > 1,$$

$$k_{t+1} = (1 - \delta)k_t + i_t, \quad 0 > \delta > 1.$$

$$c_{t} + i_{t} = (1 - \tau_{h})w_{t}h_{t} + (1 - \tau_{k})r_{t}k_{t} + \tau_{k}\delta k_{t} + TR_{t}$$

$$c_{t} + i_{t} = (1 - \tau_{h})w_{t-1}h_{t-1} + (1 - \tau_{k})r_{t}k_{t} + \tau_{k}\delta k_{t} + TR_{t}$$

$$c_{t} + i_{t} = (1 - \tau_{h})w_{t-1}h_{t-1} + (1 - \tau_{k})r_{t-1}k_{t-1} + \tau_{k}\delta k_{t-1} + TR_{t}$$

$$TR_{t} = \tau_{h}w_{t}H_{t} + \tau_{k}(r_{t} - \delta)K_{t},$$

$$k_{t} = K_{t}, \quad I_{t} = i_{t}, \quad H_{t} = h_{t}.$$

Calibration

$$U(c, l) = \ln(c) + \phi \ln(l), \quad \phi = 2$$

$$F(k,n) = k^{\theta} n^{1-\theta}, \quad \theta = 0.35$$

$$\delta = 10\%, \quad \rho = 0.814, \quad \sigma_{\varepsilon} = 1.4\%$$

$$au_h = au_k = 35\%, \quad \beta = 0.96$$

Model	y	С	k	h	X^a		
	Low tax regime (Switzerland): $ au=0.35, 1- heta=0.35$						
Model 1	+1.95%	+1.95%	+1.95%	+1.95%	0.67%		
Model 2	+2.74%	+2.51%	+3.59%	+2.28%	1.00%		
	High tax regime (France): $ au=0.70,1- heta=0.40$						
Model 1	+8.73%	+8.73%	+8.73%	+8.73%	6.19%		
Model 2	+13.88%	+12.69%	+19.83%	+10.08%	9.20%		
	Robustness: $ au=0.35, 1- heta=0.40$						
Model 1	+1.95%	+1.95%	+1.95%	+1.95%	0.73%		
Model 2	+2.89%	+2.62%	+3.75%	+2.32%	1.15%		
	Robustness: $ au=0.70, 1- heta=0.35$						
Model 1	+8.73%	+8.73%	+8.73%	+8.73%	6.05%		
Model 2	+12.95%	+11.94%	+18.85%	+9.90%	8.51%		

Table 1: Steady state properties and welfare comparison of different models

Statistic	Model 0	Model 1	Model 2			
sdev(y)	2.29	2.37	2.37			
sdev(c)	1.24	1.29	1.29			
sdev(i)	6.78	6.97	6.96			
sdev(h)	1.00	1.12	1.14			
$sdev(\tau_\Sigma)$	2.29	2.15	1.98			
corr(c,y)	0.91	0.91	0.91			
corr(i,y)	0.96	0.96	0.96			
corr(h,y)	0.91	0.93	0.91			
$corr(au_\Sigma,y)$	1.00	0.80	0.65			
$ au_{\Sigma}$ is the sum of all tax receipts.						

Table 2: Business cycle properties of the various models

Heterogeneous economy

- Risk is idiosyncratic
- Liquidity contraint
- Higher bound on benefit of delaying

Calibration:

UI benefits: 70%

Unemployment rate: CH: 2.6%, F: 12%

Unemployment duration: CH: 1 year, F: 6 years

Frequency: quarterly

No delay in capital income taxation

Experiment	X^a	SS
Benchmark economy	1.26%	1.95%
Less generous unemployment insurance ($lpha=0.35$)	1.95%	1.95%
No unemployment insurance ($lpha=0$)	2.82%	1.95%
Low weight of leisure in utility ($\phi=1.5$)	1.48%	1.88%
High weight of leisure in utility ($\phi=2.5$)	1.00%	1.98%
Higher unemployment rate ($u=12\%$)	1.67%	1.95%
Longer unemployment duration ($p(e_{t+1} u_t) = 4.2\%$)	1.48%	1.95%
Experiment	X^{a}	SS
Benchmark economy	7.25%	8.73%
Less generous unemployment insurance ($lpha=0.35$)	10.95%	8.73%
No unemployment insurance $(lpha=0)$	15.88%	8.73%
Low weight of leisure in utility ($\phi=1.5$)	8.50%	8.55%
High weight of leisure in utility ($\phi=2.5$)	6.05%	8.85%
Lower unemployment rate ($u=2.6\%$)	6.37%	8.73%
Shorter unempl. duration ($p(e_{t+1} u_t)=24\%$)	6.48%	8.73%