Basle Accord and Financial Intermediation:
The Impact of Policy

Martin Berka
UBC

Christian Zimmermann
UQAM \rightarrow UConn / Bank of Canada

1

Channels of Monetary Policy

Channels of monetary policy transmission (summary
in Mishkin, JEP 1995):

- Interest rate channel: $M \downarrow \Rightarrow i \uparrow \Rightarrow I \downarrow \Rightarrow Y \downarrow$
- Exchange rate channel:
$M \downarrow \Rightarrow i \uparrow \Rightarrow e \downarrow \Rightarrow N X \downarrow \Rightarrow Y \downarrow$
- Equity price channel I:
$M \downarrow \Rightarrow p^{e} \downarrow \Rightarrow q \downarrow \Rightarrow I \downarrow \Rightarrow Y \downarrow$
- Equity price channel II:
$M \downarrow \Rightarrow p^{e} \downarrow \Rightarrow W \downarrow \Rightarrow C \downarrow \Rightarrow Y \downarrow$
- Bank lending channel:
$M \downarrow \Rightarrow D \downarrow \Rightarrow L \downarrow \Rightarrow I \downarrow \Rightarrow Y \downarrow$
- Balance-sheet channel I: $M \downarrow \Rightarrow p^{e} \downarrow \Rightarrow$
adv. select. $\uparrow \&$ mor. haz. $\uparrow \Rightarrow L \downarrow \Rightarrow Y \downarrow$
- Balance-sheet channel II: $M \downarrow \Rightarrow i \uparrow \Rightarrow C F \downarrow \Rightarrow$ adv. select. $\uparrow \&$ mor. haz. $\uparrow \Rightarrow L \downarrow \Rightarrow Y \downarrow$
- Balance-sheet channel III:
$M \downarrow \Rightarrow p^{e} \downarrow \Rightarrow$ fin. ass. \downarrow prob(fin. distress) $\uparrow \Rightarrow$ $C^{d u r}+I^{\text {res }} \downarrow \Rightarrow Y \downarrow$
"Newly discovered":
- Stock market channel:
$\Delta M \uparrow \Rightarrow \Delta p \uparrow \Rightarrow \tau_{y} A \uparrow \Rightarrow A \downarrow \& B \uparrow \Rightarrow Y \uparrow$
(Chami, Cosimano \& Fullenkamp, IMF 1999)
- Bank balance-sheet channel (Chami \&

Cosimano, IMF 2001)

- Bank capital channel (Van den Heuvel, Wharton 2001)

Chami \& Cosimano (2001)
Assumptions:

- Capital regulation (Basle style)
- imperfect competition in banking industry
- increasing marginal cost of loans
- reduced form demand for loans
- infinite supply of deposits
$r^{b} \uparrow \Rightarrow D^{S} \downarrow \Rightarrow r^{d} \uparrow \Rightarrow \pi \downarrow \Rightarrow E \downarrow \Rightarrow L \downarrow$

Assumptions

- Capital regulation (Basle style)
- maturity transformation
- bank equity influenced by retained earnings and dividends, infinite cost to raise equity
- tax advantage of bank debt over bank equity
- reduced form demand for loans and supply of deposits
- bank heterogeneity
$r^{d} \uparrow \stackrel{t+1}{\Rightarrow} \operatorname{pr}($ reg. binds $) \uparrow \Rightarrow L \downarrow$

Here:

- competitive markets
- closer to general equilibrium: household and firm problems
- houshold: consumption smoothing $=$ saving/investment motive due to idiosyncratic and aggregate shocks
- the bank's concerns: loan returns, bad loans
- model failures/bankruptcies
- show the role of endogenous heterogeneity of firms and households
- show effects of various policy measures
- use dynamic setup

Model Assumptions

- Household
- endowed with one project with a stochastic return
- external financing necessary
- loan screening by net worth
- idiosyncratic unemployment and retirement shocks
- Bank
- collects deposits and issues equity
- allocates assets to loans and government bonds
- maximizes profits subject to regulatory and balance sheet constraints

Model Assumptions (continued)

- Household portfolio allocation
- chooses deposit/equity mix to maximize risk-adjusted return
- Central bank
- determines safe return
- determines capital adequacy ratio
- supplies riskless bonds

Households / Firms types

- Employed workers $\left(m<m^{*}\right)$
- Unemployed workers $\left(m<m^{*}\right)$ with prob u
- Entrepreneurs ($m \geq m^{*}$)
- Retirees with prob τ
- Death with prob δ
$m^{*}=$ minimum net worth eligible for external financing

Workers

For a worker, $V^{W}(m)=$

$$
\begin{aligned}
\left\{\max ^{\left.i^{\prime}, m^{i^{\prime}}\right\}}\right. & \left\{U_{W}\left(l_{W}, c^{i}\right)+\beta\left[(1 - \tau) \left[(1-u) V_{W}\left(m^{i^{\prime}}\right)+\right.\right.\right. \\
& \left.\left.\left.u V_{U}\left(m^{i^{\prime}}\right)+E_{r^{\prime}} V_{E}\left(m^{i^{\prime}}, r^{i^{\prime}}\right)\right]+\tau V_{R}\left(m^{i^{\prime}}\right)\right]\right\} \\
\text { s.t. } & c^{i}+m^{i^{\prime}}=\left(1+r^{\text {port }}\right) m^{i}+y-\xi \\
& V_{W}\left(m^{i}\right)=0 \text { if } m^{i} \geq m^{*}
\end{aligned}
$$

For an unemployed worker, $V^{U}(m)=$

$$
\begin{aligned}
\max _{\left\{c^{i}, m^{i^{\prime}}\right\}} & \left\{U_{U}\left(l_{U}, c^{i}\right)+\beta\left[(1 - \tau) \left[(1-u) V_{W}\left(m^{i^{\prime}}\right)+\right.\right.\right. \\
& \left.\left.\left.u V_{U}\left(m^{i^{\prime}}\right)+E_{r^{\prime}} V_{E}\left(m^{i^{\prime}}, r^{i^{\prime}}\right)\right]+\tau V_{R}\left(m^{i^{\prime}}\right)\right]\right\} \\
\text { s.t. } & c^{i}+m^{i^{\prime}}=\left(1+r^{\text {port }}\right) m^{i}+\theta y-\xi \\
& V_{U}\left(m^{i}\right)=0 \text { if } m^{i} \geq m^{*}
\end{aligned}
$$

Entrepreneurs

- one project x^{i} with return r^{i}
- external financing, $x_{t}^{i}=\phi m_{t}^{i}(\phi>1)$
- returns are risky - possibility of bankruptcy

$$
\begin{aligned}
V^{E}(m, r)= & \\
\max _{\left.c^{i}, m^{i^{\prime}}\right\}} & \left\{U_{E}\left(l_{E}, c^{i}\right)+\beta\left[(1 - \tau) \left[(1-u) V_{W}\left(m^{i^{\prime}}\right)+\right.\right.\right. \\
& \left.\left.\left.u V_{U}\left(m^{i^{\prime}}\right)+E_{r^{\prime}} V_{E}\left(m^{i^{\prime}}, r^{i^{\prime}}\right)\right]+\tau V_{R}\left(m^{i^{\prime}}\right)\right]\right\} \\
\text { s.t. } & c^{i}=\max \left\{c_{m i n}, m^{i}+y+\left(1+r^{i}\right) x^{i}-\right. \\
& \left.r^{l}\left(x^{i}-m^{i}\right)-m^{i^{\prime}}-\xi\right\} \\
& x^{i}=\phi m^{i} \\
& V_{E}\left(m^{i}, r^{i}\right)=0 \text { if } m^{i}<m^{*}
\end{aligned}
$$

Banks

- are identical \Rightarrow represented by a single bank
- liabilities: collect deposits and issue equity
- assets: provide loans and buy riskless bonds
- maximize profits:
$\max _{\{L, B, D, E\}} \quad r^{l} L+r^{b} B-r^{d} D-r^{e} E-\delta\left(\frac{D}{E}\right)^{\gamma} D$
$-\left(1+l_{c}\right) \epsilon L$
s.t. $\quad B+L=D+E$
$\frac{E}{L} \geq \alpha$
$D+E \geq L$
- instruments: minimum collateral $m^{*}(\mathrm{~L})$, lending rate r^{l} which clears the market

Losses

- it is costly to liquidate
- if all projects of a household go bankrupt, the household gets minimal consumption

Household portfolio decision

savings split to maximize risk-adjusted return:

$$
\max _{\omega_{R}} \omega_{R} r^{e}+\left(1-\omega_{R}\right) r^{d}-\frac{1}{2} \lambda \omega_{R}^{2} \sigma_{E}^{2}
$$

the optimal share of equity in portfolio ω_{R}^{*} is

$$
\omega_{R}^{*}=\frac{r^{e}-r^{d}}{\lambda \sigma_{E}^{2}}
$$

Central Bank

Decides on Treasury bond interest rate

Central bank's actions

- affect lending conditions: lending rate and minimum collateral
- affect bank funding also through (an opposite) change in equity prices
- affect saving decisions of workers

Equilibrium

- households solve their utility maximization problems (heterogenous part)
- banks solve their profit maximization problem (homogenous part)
- markets for loans, bonds, deposits and equity clear
- expected equal realized losses

Solution procedure

- can not apply the usual solution strategies because non-linearities here are crucial
- two-state Markov process for transitional states between High and Low states due to aggregate shocks
- explicit solution for financial sector variables as functions of total assets in the economy
- value function iteration to get optimal decisions over an asset grid and aggregate states
- invariant distribution iteration (defined over aggregate states as well)
- equilibrium is reached by finding a set of R^{L} and m^{*} that balance all markets and satisfy all optimality conditions.

Calibration

- average real deposit rate: 0.9% (real GIC and saving rate)
- capital adequacy ratio for loans $\alpha=0.08$
- deposit insurance premium corresponds to 0.0417\% of deposits
- retirement, minimum consumption and UI benefits: 30\%
- $\phi=2.2$ (debt/equity ratio)
- auditing fee 3%, loan administration cost 0%
- equity market: $\sigma_{E}^{2}=0.24$, implies $\lambda=16$
- 9% prob of unemployment
- 5% prob of retirement, 10% prob of death

Calibration (continued)

- distribution of returns:

| High: | -50% 5.2% 60%
 0.71% 98.48%
 0.81%

 Low: -50% 2.57%
 1.79% 97.42% | 0.79% |
| ---: | ---: | ---: | ---: |

- High states in the Markov transition matrix correspond to 75% of best quarters in the sample, Low states occur 25% of times.

$$
S=\left(\begin{array}{rrrrr}
50.2 & 16.7 & 5.6 & 1.9 & 0.6 \\
16.7 & 5.6 & 1.9 & 0.6 & 0.2
\end{array}\right)
$$

Results

- benchmark (with a credit crunch ?)
- see what monetary policy can do
- see what regulatory policy can do

Cyclical behavior

Correlations of Y_{t} with X_{t+i} (differenced quarterly data):

i	-4	-3	-2	-1	0	+1	+2	+3	+4
Canada									
Deposits	0.19	0.18	0.20	0.19	0.06	0.06	0.03	-0.14	-0.21
Equity	0.27	0.31	0.17	0.10	0.08	0.08	0.05	0.03	0.15
Loans	0.11	0.07	0.24	0.21	0.03	0.09	0.05	-0.15	-0.16
US									
Deposits	0.19	0.11	0.13	-0.12	0.22	0.07	-0.09	-0.20	0.01
Equity	0.10	0.12	-0.10	0.09	-0.15	-0.39	-0.15	-0.25	-0.27
Loans	0.00	0.00	0.26	0.23	0.38	0.12	0.12	0.00	-0.19

Conclusions

- Credit crunch found, but small
- Timing of monetary policy is crucial
- Impact of monetary policy is asymmetric
- Do not relax capital requirements in bad times!

The road ahead

With Césaire Meh (Bank of Canada):
Full GE model for welfare analysis

