# Malaria Policy: Alternative Prevention and Eradication Strategies in a Dynamic Model

Douglas Gollin (Williams College)

Christian Zimmermann (University of Connecticut)

December 23, 2009

イロト イポト イヨト イヨト

#### Outline

Introduction A Model Economy Policies Experiments To conclude...

#### Introduction

The Question The Context

#### A Model Economy

Principle Households Technology Malaria Equilibrium

#### Policies

#### Experiments

To conclude...

・ロン ・回と ・ヨン・

The Question The Context

## The Question

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

三 のへで

The Question The Context

## The Question

Malaria is bad

= 9QC

The Question The Context

#### The Question

Malaria is bad, very bad.

< □ > < □ > < □ > < □ > < □ > .

The Question The Context

#### The Question

- Malaria is bad, very bad.
- Agreement:

< □ > < □ > < □ > < □ > < □ > .

The Question The Context

#### The Question

- Malaria is bad, very bad.
- Agreement: something needs to be done.

・ロン ・回と ・ヨン・

The Question The Context

### The Question

- Malaria is bad, very bad.
- Agreement: something needs to be done.
- Disagreement:

・ロン ・回と ・ヨン・

The Question The Context

### The Question

- Malaria is bad, very bad.
- Agreement: something needs to be done.
- Disagreement: what should be done.

・ロン ・回と ・ヨン・

The Question The Context

### The Question

- Malaria is bad, very bad.
- Agreement: something needs to be done.
- Disagreement: what should be done.
- Our question here:

・ロン ・回と ・ヨン・

The Question The Context

### The Question

- Malaria is bad, very bad.
- Agreement: something needs to be done.
- Disagreement: what should be done.
- Our question here:
  - What malaria control policy is most effective in a dynamic model economy that takes individual incentives into account?

イロト イポト イヨト イヨト

The Question The Context

## The Context

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・のへで

The Question The Context

## The Context

▶ 40% lives in regions with endemic malaria

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

The Question The Context

### The Context

- ▶ 40% lives in regions with endemic malaria
- ▶ Malaria costs 40% of GDP and 1.3% of growth

・ロン ・回と ・ヨン ・ヨン

The Question The Context

### The Context

- ▶ 40% lives in regions with endemic malaria
- ▶ Malaria costs 40% of GDP and 1.3% of growth
- 300 mio episodes of acute illness every year

・ロン ・回と ・ヨン・

The Question The Context

## The Context

- ▶ 40% lives in regions with endemic malaria
- ▶ Malaria costs 40% of GDP and 1.3% of growth
- 300 mio episodes of acute illness every year
- 1 mio deaths every year

イロト イポト イヨト イヨト

Principle Households Technology Malaria Equilibrium

# Principle

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

・ロン ・回 と ・ ヨ と ・ ヨ と

Principle Households Technology Malaria Equilibrium

# Principle

Households face various shocks:

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

## Principle

#### Principle Households Technology Malaria Equilibrium

Households face various shocks: income/producticity,

・ロト ・回ト ・ヨト ・ヨト



Principle Households Technology Malaria Equilibrium

#### ► Households face various shocks: income/producticity, health

イロン イボン イヨン イヨン



Principle Households Technology Malaria Equilibrium

- Households face various shocks: income/producticity, health
- Protection decisions

∃ 990

Principle

Principle Households Technology Malaria Equilibrium

- Households face various shocks: income/producticity, health
- Protection decisions
- Endogenous infection rate

・ロン ・回と ・ヨン ・ヨン

# Principle

Households face various shocks: income/producticity, health

Principle

Malaria

Households

Equilibrium

- Protection decisions
- Endogenous infection rate
- Endogenous factor prices, production

イロト イポト イヨト イヨト

# Principle

Households face various shocks: income/producticity, health

Principle

Malaria

Households

Equilibrium

- Protection decisions
- Endogenous infection rate
- Endogenous factor prices, production
- Savings,

イロト イヨト イヨト イヨト

Principle

► Households face various shocks: income/producticity, health

Principle

Malaria

Households

Equilibrium

- Protection decisions
- Endogenous infection rate
- Endogenous factor prices, production
- Savings, borrowing constraints

イロト イポト イヨト イヨト

# Principle

Households face various shocks: income/producticity, health

Principle

Malaria

Households

Equilibrium

- Protection decisions
- Endogenous infection rate
- Endogenous factor prices, production
- ► Savings, borrowing constraints ⇒ heterogeneous agents

イロト イポト イヨト イヨト

Principle Households Technology Malaria Equilibrium

## Households

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

・ロン ・回 と ・ ヨ と ・ ヨ と

Principle Households Technology Malaria Equilibrium

## Households

# • $\max_{\{c_{it},k_{i,t+1},p_{it}\}_{t=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \ln(\gamma c_{it})$

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

・ロト ・回ト ・ヨト ・ヨト

Principle Households Technology Malaria Equilibrium

## Households

• 
$$\max_{\{c_{it},k_{i,t+1},p_{it}\}_{t=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \ln(\gamma c_{it})$$
  
• S.T.  $c_{it} + k_{i,t+1} + p_{it}q = w_t h_{it} \pi_{it} + r_t k_{it}$ 

・ロン ・回 と ・ ヨ と ・ ヨ と

Principle Households Technology Malaria Equilibrium

## Households

- $\max_{\{c_{it},k_{i,t+1},p_{it}\}_{t=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \ln(\gamma c_{it})$
- S.T.  $c_{it} + k_{i,t+1} + p_{it}q = w_t h_{it} \pi_{it} + r_t k_{it}$
- $\pi_{it}$  random

・ロト ・同ト ・ヨト ・ヨト

∃ <2 <</p>

Principle Households Technology Malaria Equilibrium

## Households

- $\blacktriangleright \max_{\{c_{it},k_{i,t+1},p_{it}\}_{t=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \ln(\gamma c_{it})$
- S.T.  $c_{it} + k_{i,t+1} + p_{it}q = w_t h_{it} \pi_{it} + r_t k_{it}$
- $\pi_{it}$  random
- h<sub>it</sub> random

(日) (同) (目) (日) (日) (日)

Principle Households Technology Malaria Equilibrium

## Technology

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

Principle Households Technology Malaria Equilibrium

## Technology

• 
$$L_t = \sum_i h_{it} \pi_{it}$$

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

Principle Households Technology Malaria Equilibrium

## Technology

• 
$$L_t = \sum_i h_{it} \pi_{it}$$
  
•  $K_t = \sum_i k_{it}$ 

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

Principle Households Technology Malaria Equilibrium

## Technology

$$L_t = \sum_i h_{it} \pi_{it}$$

$$K_t = \sum_i k_{it}$$

$$Y_t = K_t^{\alpha} L_t^{1-\alpha}$$

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

Principle Households Technology Malaria Equilibrium

## Technology

$$L_t = \sum_i h_{it} \pi_{it}$$

$$K_t = \sum_i k_{it}$$

$$Y_t = K_t^{\alpha} L_t^{1-\alpha}$$

$$r_t = \alpha K_t^{\alpha-1} L_t^{1-\alpha}$$

< □ > < □ > < □ > < Ξ > < Ξ > ...

Principle Households Technology Malaria Equilibrium

# Technology

$$L_t = \sum_i h_{it} \pi_{it}$$

$$K_t = \sum_i k_{it}$$

$$Y_t = K_t^{\alpha} L_t^{1-\alpha}$$

$$r_t = \alpha K_t^{\alpha-1} L_t^{1-\alpha}$$

$$w_t = (1-\alpha) K_t^{\alpha} L_t^{-\alpha}$$

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

æ.,

Principle Households Technology Malaria Equilibrium

# Malaria

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

・ロト ・回 ト ・ヨト ・ヨト - ヨー

Principle Households Technology Malaria Equilibrium

# Malaria

infection rate:

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

Principle Households Technology Malaria Equilibrium

# Malaria

- infection rate:
- infected people:

<ロ> (四) (四) (注) (注) (三)

Principle Households Technology Malaria Equilibrium

# Malaria

- infection rate:  $i = Z \left(\frac{S}{N}\right)^{\mu}$
- infected people:

<ロ> (四) (四) (注) (注) (三)

Principle Households Technology Malaria Equilibrium

## Malaria

▶ infection rate: i = Z (S/N)<sup>µ</sup>
 ▶ infected people: S'/N' = N[S-d<sub>s</sub>S+[iH(1-V)+iHVe](1-d<sub>h</sub>)]/N-d<sub>s</sub>S-d<sub>h</sub>H+fN

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Principle Households Technology Malaria Equilibrium

## Equilibrium

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

æ.,

Principle Households Technology Malaria Equilibrium

# Equilibrium

savings, protection decisions, infection rate, proportion infected, laws of motion, distributions such that:

・ロン ・回と ・ヨン・

Principle Households Technology Malaria Equilibrium



savings, protection decisions, infection rate, proportion infected, laws of motion, distributions such that:

households optimize

・ロン ・回と ・ヨン・

Principle Households Technology Malaria Equilibrium



savings, protection decisions, infection rate, proportion infected, laws of motion, distributions such that:

- households optimize
- factor markets are in equilibrium

・ロン ・回と ・ヨン ・ヨン

Principle Households Technology Malaria Equilibrium



savings, protection decisions, infection rate, proportion infected, laws of motion, distributions such that:

- households optimize
- factor markets are in equilibrium
- population distribution is ergodic

イロト イポト イヨト イヨト

## Policies



### Treatment

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg



### Treatment

Cost

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の < ⊙



### Treatment

### Cost Efficacy

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の < ⊙

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg



### Treatment Insecticide-treated bednets (ITN)

Cost Efficacy

< □ > < □ > < □ > < Ξ > < Ξ > ...

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg



Treatment Insecticide-treated bednets (ITN) Long-lasting insecticide nets (LLIN) Cost Efficacy

・ロン ・回と ・ヨン・

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg



Treatment Insecticide-treated bednets (ITN) Long-lasting insecticide nets (LLIN) Residual spraying (IRS) Cost Efficacy

<ロ> (日) (日) (日) (日) (日)



Treatment Insecticide-treated bednets (ITN) Long-lasting insecticide nets (LLIN) Residual spraying (IRS) Vaccine Cost Efficacy

イロト イポト イヨト イヨト



Treatment Insecticide-treated bednets (ITN) Long-lasting insecticide nets (LLIN) Residual spraying (IRS) Vaccine Cost Efficacy \$45

イロト イポト イヨト イヨト



TreatmentCostEfficacyInsecticide-treated bednets (ITN)\$45Long-lasting insecticide nets (LLIN)\$20–30Residual spraying (IRS)Vaccine

イロト イポト イヨト イヨト



| Treatment                            | Cost    | Efficacy |
|--------------------------------------|---------|----------|
| Insecticide-treated bednets (ITN)    | \$45    |          |
| Long-lasting insecticide nets (LLIN) | \$20-30 |          |
| Residual spraying (IRS)              | \$16-32 |          |
| Vaccine                              |         |          |



| Treatment                            | Cost    | Efficacy |
|--------------------------------------|---------|----------|
| Insecticide-treated bednets (ITN)    | \$45    |          |
| Long-lasting insecticide nets (LLIN) | \$20-30 |          |
| Residual spraying (IRS)              | \$16-32 |          |
| Vaccine                              | \$50-75 |          |



| Treatment                            | Cost    | Efficacy |
|--------------------------------------|---------|----------|
| Insecticide-treated bednets (ITN)    | \$45    | 70%      |
| Long-lasting insecticide nets (LLIN) | \$20-30 |          |
| Residual spraying (IRS)              | \$16-32 |          |
| Vaccine                              | \$50-75 |          |

## Policies

| Treatment                            | Cost    | Efficacy |
|--------------------------------------|---------|----------|
| Insecticide-treated bednets (ITN)    | \$45    | 70%      |
| Long-lasting insecticide nets (LLIN) | \$20-30 | 70%      |
| Residual spraying (IRS)              | \$16-32 |          |
| Vaccine                              | \$50-75 |          |

## Policies

| Treatment                            | Cost    | Efficacy |
|--------------------------------------|---------|----------|
| Insecticide-treated bednets (ITN)    | \$45    | 70%      |
| Long-lasting insecticide nets (LLIN) | \$20-30 | 70%      |
| Residual spraying (IRS)              | \$16-32 | 80%      |
| Vaccine                              | \$50-75 |          |

## Policies

| Treatment                            | Cost    | Efficacy |
|--------------------------------------|---------|----------|
| Insecticide-treated bednets (ITN)    | \$45    | 70%      |
| Long-lasting insecticide nets (LLIN) | \$20-30 | 70%      |
| Residual spraying (IRS)              | \$16-32 | 80%      |
| Vaccine                              | \$50-75 | 50%      |



| Treatment                            | Cost   | Efficacy |
|--------------------------------------|--------|----------|
| Insecticide-treated bednets (ITN)    | \$45   | 70%      |
| Long-lasting insecticide nets (LLIN) | \$25   | 70%      |
| Residual spraying (IRS)              | \$24   | 80%      |
| Vaccine                              | \$62.5 | 50%      |



| Treatment                            | Cost   | Efficacy |
|--------------------------------------|--------|----------|
| Insecticide-treated bednets (ITN)    | \$45   | 70%      |
| Long-lasting insecticide nets (LLIN) | \$25   | 70%      |
| Residual spraying (IRS)              | \$24   | 80%      |
| Vaccine                              | \$62.5 | 50%      |
| GDP/capita: \$400                    |        |          |

### Experiments

= 9QC

## Experiments

Z = 0.5sick/prot. Κ Y С Treatment sick 12.08 2.45 2.27 no malaria 0.000 0.000 no prot. ITN LLIN IRS Vaccine

イロン 不同と 不同と 不同と

### Experiments

| Z = 0.5    |       |            |       |      |      |
|------------|-------|------------|-------|------|------|
| Treatment  | sick  | sick/prot. | K     | Y    | С    |
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.866 | 0.000      | 2.99  | 1.40 | 1.16 |
| ITN        |       |            |       |      |      |
| LLIN       |       |            |       |      |      |
| IRS        |       |            |       |      |      |
| Vaccine    |       |            |       |      |      |

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の < ⊙

### Experiments

| Z = 0.5    |       |            |       |      |      |
|------------|-------|------------|-------|------|------|
| Treatment  | sick  | sick/prot. | K     | Y    | С    |
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.866 | 0.000      | 2.99  | 1.40 | 1.16 |
| ITN        | 0.616 | 0.616      | 3.74  | 1.54 | 1.45 |
| LLIN       |       |            |       |      |      |
| IRS        |       |            |       |      |      |
| Vaccine    |       |            |       |      |      |

= 9QC

### Experiments

| Z = 0.5    |       |            |       |      |      |
|------------|-------|------------|-------|------|------|
| Treatment  | sick  | sick/prot. | K     | Y    | С    |
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.866 | 0.000      | 2.99  | 1.40 | 1.16 |
| ITN        | 0.616 | 0.616      | 3.74  | 1.54 | 1.45 |
| LLIN       | 0.616 | 0.616      | 3.76  | 1.55 | 1.29 |
| IRS        |       |            |       |      |      |
| Vaccine    |       |            |       |      |      |

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

### Experiments

| Z = 0.5    |       |            |       |      |      |
|------------|-------|------------|-------|------|------|
| Treatment  | sick  | sick/prot. | K     | Y    | С    |
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.866 | 0.000      | 2.99  | 1.40 | 1.16 |
| ITN        | 0.616 | 0.616      | 3.74  | 1.54 | 1.45 |
| LLIN       | 0.616 | 0.616      | 3.76  | 1.55 | 1.29 |
| IRS        | 0.523 | 0.523      | 4.44  | 1.65 | 1.41 |
| Vaccine    |       |            |       |      |      |

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

### Experiments

| Z = 0.5    |       |            |       |      |      |
|------------|-------|------------|-------|------|------|
| Treatment  | sick  | sick/prot. | K     | Y    | С    |
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.866 | 0.000      | 2.99  | 1.40 | 1.16 |
| ITN        | 0.616 | 0.616      | 3.74  | 1.54 | 1.45 |
| LLIN       | 0.616 | 0.616      | 3.76  | 1.55 | 1.29 |
| IRS        | 0.523 | 0.523      | 4.44  | 1.65 | 1.41 |
| Vaccine    | 0.715 | 0.715      | 3.25  | 1.46 | 1.20 |

= 9QC

### Experiments

| Z = 0.7    |       |            |       |      |      |
|------------|-------|------------|-------|------|------|
| Treatment  | sick  | sick/prot. | K     | Y    | С    |
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.901 | 0.000      | 2.96  | 1.39 | 1.16 |
| ITN        | 0.684 | 0.684      | 3.41  | 1.49 | 1.23 |
| LLIN       | 0.684 | 0.684      | 3.43  | 1.49 | 1.23 |
| IRS        | 0.601 | 0.601      | 3.85  | 1.56 | 1.31 |
| Vaccine    | 0.767 | 0.767      | 3.08  | 1.42 | 1.16 |

### Experiments

| Z = 0.9    |       |            |       |      |      |
|------------|-------|------------|-------|------|------|
| Treatment  | sick  | sick/prot. | K     | Y    | С    |
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.921 | 0.000      | 2.93  | 1.38 | 1.15 |
| ITN        | 0.728 | 0.728      | 3.18  | 1.44 | 1.19 |
| LLIN       | 0.728 | 0.728      | 3.26  | 1.46 | 1.20 |
| IRS        | 0.654 | 0.654      | 3.60  | 1.52 | 1.26 |
| Vaccine    | 0.798 | 0.798      | 3.01  | 1.41 | 1.15 |

### Experiments

| Z = 0.3    |       |            |       |      |      |
|------------|-------|------------|-------|------|------|
| Treatment  | sick  | sick/prot. | K     | Y    | С    |
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.793 | 0.000      | 3.12  | 1.43 | 1.19 |
| ITN        | 0.497 | 0.497      | 4.63  | 1.68 | 1.45 |
| LLIN       | 0.497 | 0.497      | 4.65  | 1.68 | 1.45 |
| IRS        | 0.397 | 0.397      | 5.80  | 1.83 | 1.62 |
| Vaccine    | 0.616 | 0.616      | 3.72  | 1.54 | 1.28 |

### Experiments

| Z = 0.1    |       |            |       |      |      |
|------------|-------|------------|-------|------|------|
| Treatment  | sick  | sick/prot. | K     | Y    | С    |
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.550 | 0.000      | 4.31  | 1.63 | 1.41 |
| ITN        | 0.241 | 0.241      | 7.98  | 2.08 | 1.87 |
| LLIN       | 0.241 | 0.241      | 7.90  | 2.07 | 1.87 |
| IRS        | 0.170 | 0.170      | 8.98  | 2.18 | 1.98 |
| Vaccine    | 0.353 | 0.353      | 6.37  | 1.90 | 1.71 |

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

### Experiments

| Z = 0.7    |       |            |       |      |      |
|------------|-------|------------|-------|------|------|
| Treatment  | sick  | sick/prot. | K     | Y    | С    |
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.901 | 0.000      | 2.96  | 1.39 | 1.16 |
| ITN        | 0.684 | 0.684      | 3.41  | 1.49 | 1.23 |
| LLIN       | 0.684 | 0.684      | 3.43  | 1.49 | 1.23 |
| IRS        | 0.601 | 0.601      | 3.85  | 1.56 | 1.31 |
| Vaccine    | 0.767 | 0.767      | 3.08  | 1.42 | 1.16 |

## Experiments

| Z = 0.7, free | e protection |
|---------------|--------------|
|---------------|--------------|

| Treatment  | sick  | sick/prot. | K     | Y    | С    |
|------------|-------|------------|-------|------|------|
| no malaria | 0.000 | 0.000      | 12.08 | 2.45 | 2.27 |
| no prot.   | 0.901 | 0.000      | 2.96  | 1.39 | 1.16 |
| ITN        | 0.616 | 0.616      | 3.80  | 1.55 | 1.31 |
| LLIN       | 0.616 | 0.616      | 3.80  | 1.55 | 1.31 |
| IRS        | 0.523 | 0.523      | 4.47  | 1.66 | 1.42 |
| Vaccine    | 0.715 | 0.715      | 3.32  | 1.47 | 1.22 |

< □ > < □ > < □ > < Ξ > < Ξ > ...

-2

# To conclude...

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・のへで



Treatments need to be more efficient

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の < ⊙



> Treatments need to be more efficient to have an impact

Gollin, Zimmermann Malaria Policy: Alternative Prevention and Eradication Strateg

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● の < ⊙



 Treatments need to be more efficient to have an impact as they are always adopted

・ロン ・回と ・ヨン ・ヨン



- Treatments need to be more efficient to have an impact as they are always adopted
- Cost of treatment matters little

・ロン ・回と ・ヨン ・ヨン



- Treatments need to be more efficient to have an impact as they are always adopted
- Cost of treatment matters little
- Free treatment is not the solution

・ロン ・回と ・ヨン ・ヨン

-



- Treatments need to be more efficient to have an impact as they are always adopted
- Cost of treatment matters little
- Free treatment is not the solution
- Ecological factors matter much more

イロト イヨト イヨト イヨト

-